
Inquisit Programmer’s Manual 
 
 
 
 
 
 
 

Sean Draine, PhD. 
Copyright 2022, Millisecond Software, LLC  



Inquisit Programmer’s Manual 
 

Page 2 
 

 

Contents 
The Inquisit Lab Programming Environment ................................................................................. 6 

Getting Started .......................................................................................................................... 7 

Editing or Running a Script .................................................................................................... 8 

Using Image, Video, Sound, HTML, and Other Media Files .................................................. 8 

Accessing Data Files ............................................................................................................. 9 

Debugging Inquisit Scripts ......................................................................................................... 9 

Message List .......................................................................................................................... 9 

The Debugger Watch Window ............................................................................................... 9 

Running your code ............................................................................................................... 10 

The Inquisit Programming Language .......................................................................................... 12 

Inquisit Markup Language (IQML) ........................................................................................... 12 

Elements and Attributes ....................................................................................................... 12 

Getting Help ......................................................................................................................... 13 

Inquisit Scripting Language (IQScript) ..................................................................................... 13 

The IQML Object Model .............................................................................................................. 15 

Defaults ................................................................................................................................... 15 

canvasaspectratio ................................................................................................................ 15 

fontstyle ............................................................................................................................... 16 

screencolor .......................................................................................................................... 16 

inputdevice ........................................................................................................................... 16 

windowsize .......................................................................................................................... 16 

Stimuli ...................................................................................................................................... 17 

text ....................................................................................................................................... 17 

picture .................................................................................................................................. 18 

shape ................................................................................................................................... 18 

video .................................................................................................................................... 19 

html ...................................................................................................................................... 19 

clock ..................................................................................................................................... 19 

sound ................................................................................................................................... 20 

Positioning and Layout of Visual Stimuli .............................................................................. 20 

Erasing Stimuli ..................................................................................................................... 21 



Inquisit Programmer’s Manual 
 

Page 3 
 

item ...................................................................................................................................... 21 

Trials ........................................................................................................................................ 23 

Presenting Stimuli ................................................................................................................ 23 

Measuring Responses ......................................................................................................... 25 

inputdevice ........................................................................................................................... 25 

validresponse ....................................................................................................................... 25 

correctresponse ................................................................................................................... 26 

Measuring Response Time .................................................................................................. 26 

Specialized Trials .................................................................................................................... 26 

Openended .......................................................................................................................... 27 

Slidertrial .............................................................................................................................. 27 

Likert .................................................................................................................................... 27 

Blocks ...................................................................................................................................... 28 

preinstructions ..................................................................................................................... 29 

trials ..................................................................................................................................... 29 

postinstructions .................................................................................................................... 29 

Expt (experiment) .................................................................................................................... 29 

preinstructions ..................................................................................................................... 30 

blocks ................................................................................................................................... 30 

postinstructions .................................................................................................................... 30 

Presenting Instruction Pages .................................................................................................. 30 

instruct ................................................................................................................................. 30 

page ..................................................................................................................................... 31 

htmlpage .............................................................................................................................. 32 

Data element ........................................................................................................................... 32 

columns ............................................................................................................................... 33 

separatefiles ........................................................................................................................ 34 

Summary Data ........................................................................................................................ 34 

columns ............................................................................................................................... 35 

separatefiles ........................................................................................................................ 35 

Programming a Simple Test with IQML ...................................................................................... 36 

Emotional Dot Probe ............................................................................................................... 36 

Defining the Stimuli .............................................................................................................. 36 



Inquisit Programmer’s Manual 
 

Page 4 
 

Defining the Trials ................................................................................................................ 38 

Defining the Blocks .............................................................................................................. 41 

Defining the expt .................................................................................................................. 41 

Defining the instruction pages ............................................................................................. 42 

Default values ...................................................................................................................... 44 

Data ..................................................................................................................................... 44 

Programming with IQScript ......................................................................................................... 46 

IQScript Syntax ....................................................................................................................... 49 

Value Types ......................................................................................................................... 49 

Getting and Setting Object Properties ................................................................................. 49 

Calling Object Functions ...................................................................................................... 50 

Global Functions .................................................................................................................. 51 

Operators ............................................................................................................................. 51 

Values element ........................................................................................................................ 52 

Parameters element ................................................................................................................ 53 

Keywords and Statements ...................................................................................................... 54 

Variable declarations: var .................................................................................................... 54 

Conditional Statements: if, else if, and else. ........................................................................ 55 

Conditional Looping ............................................................................................................. 57 

Return Statement ................................................................................................................. 57 

Expressions element ............................................................................................................... 58 

Built-in Elements ..................................................................................................................... 59 

Script Element ..................................................................................................................... 59 

Display Element ................................................................................................................... 60 

Computer Element ............................................................................................................... 60 

Inquisit Element ................................................................................................................... 61 

Mouse Element .................................................................................................................... 61 

Handling IQML Events with IQScript ........................................................................................... 62 

Stimulus Onprepare Event ...................................................................................................... 62 

Trial Ontrialbegin and Ontrialend Events ................................................................................ 63 

Block Onblockbegin and Onblockend Events ......................................................................... 64 

Expt Onexptbegin and Onexptend Events .............................................................................. 64 

Trial Isvalidresponse and Iscorrectresponse Events ............................................................... 65 



Inquisit Programmer’s Manual 
 

Page 5 
 

Conditional Branching with IQScript ........................................................................................... 67 

Text Insertion Macros ................................................................................................................. 68 

Advanced Stimulus Presentation ................................................................................................ 70 

Selecting Items ........................................................................................................................ 70 

Random Selection ............................................................................................................... 70 

Sequential Selection ............................................................................................................ 70 

Synchronized Selection Between Stimuli ............................................................................ 71 

Animation ................................................................................................................................ 72 

Path Animations ................................................................................................................... 72 

Points animations ................................................................................................................ 74 

Circle animations ................................................................................................................. 75 

 ................................................................................................................................................ 75 

Size Animations ................................................................................................................... 76 

Creating Dynamic Stimuli ........................................................................................................ 77 

Insertstimulustime() and insertstimulusframe() functions .................................................... 78 

Text insertion macros .......................................................................................................... 78 

Working with lists ..................................................................................................................... 79 

List Attributes ....................................................................................................................... 79 

Using Lists for Advanced Selection ..................................................................................... 80 

Using Lists for Computation ................................................................................................. 81 

Trial Duration, Timeouts, and Inter-Trial Intervals ....................................................................... 83 

pretrialpause ........................................................................................................................ 83 

stimulusframes ..................................................................................................................... 83 

response .............................................................................................................................. 83 

timeout ................................................................................................................................. 84 

posttrialpause ...................................................................................................................... 84 

trialduration .......................................................................................................................... 84 

Running Multiple Scripts with the Batch Element ....................................................................... 85 

Between-Group Manipulations ............................................................................................ 86 

Between-Session Manipulations .......................................................................................... 86 

Resources for Programming your Own Scripts ........................................................................... 88 

 

  



Inquisit Programmer’s Manual 
 

Page 6 
 

The Inquisit Lab Programming Environment 
At the heart of an Inquisit experiment is one or more scripts which contain the commands that 
instruct Inquisit how a given experiment should run. The script specifies the logical flow of the 
experiment, which stimuli to present, how participants are meant to respond, and which data 
should be recorded. Inquisit scripts are standard text files (UTF-8), which enables Inquisit to 
handle characters from any alphabet in the world, including bidirectional text such as Hebrew 
and Arabic. You can edit your script using any editor that supports plain text such as Notepad, 
Visual Studio, or XCode, but if you try to save a script using a proprietary format such as 
Microsoft Word (e.g. *.docx), it can’t be run in Inquisit.  
 
While advanced developers may prefer to use their own editor for programming Inquisit scripts, 
most will use Inquisit Lab as their development environment. Inquisit Lab has a rich editor with 
colorization to make your code more readable, autocomplete lists showing which commands are 
valid in a given context, tooltips showing syntax hints, context sensitive help via the F1 
command, a navigation window that allows you to jump to the elements in your script, a 
validator that reports errors, and debugging features such as the ability to pause a script and 
inspect the current values of its properties through the Watch Window.  
 
Of course, Inquisit Lab also allows you to run your script and save data, using either a human 
responder or its built-in automatic test monkey. You can examine the data files to test that 
randomization is working correctly, the correct number of trials are being run, and that test 
scores are calculated correctly. 
 



Inquisit Programmer’s Manual 
 

Page 7 
 

Figure 1. The Inquisit Lab programming environment 

Getting Started 
 
The first step for programming your experiment is to download Inquisit Lab from 
http://www.millisecond.com/download. When you run Inquisit Lab for the first time, you’ll see a 
Registration Window appear. If you have purchased an Inquisit Lab license, click the “Get 
Registration Key” and enter your user id and password to register Inquisit. If you don’t have an 
Inquisit Lab license, click the Run Free Trial button to take advantage of the free 30-day trial.  
 
Inquisit then opens and displays the Start Page, which gives you three options under the Start 
section. You can click “Download Tests from Millisecond”, which will take you to the Millisecond 
Test Library where you can choose from hundreds of tests to download. If you have an existing 
script on your computer, you can select “Open at test...”, which will enable you to browse to the 
folder with your script and open it. You can also select “Create a New Test”, which will open a 
blank script for you to start from scratch. In many cases, you will likely start with an existing 
script that is similar to the procedure you wish to run and then modify that script as needed. 
Once you get to know the Inquisit scripting language well, it can often be just as efficient to 
program your ideas from scratch.  

http://www.millisecond.com/download


Inquisit Programmer’s Manual 
 

Page 8 
 

Editing or Running a Script 
If you are editing an existing script, you can open it in Inquisit Lab in one of two ways.  
 
1. You can simply double-click the script in Windows Explorer or Mac Finder, and Inquisit will 
show a dialog with options to Run or Edit the script. If you’ve configured your computer to 
display file extensions, Inquisit scripts use either the .iqx extension or .iqzip extension. If your 
computer doesn’t display file extensions (default for Mac and Windows), script files will be 
displayed with the Inquisit stopwatch icon. If you click Run, it will run the test. If you click Edit, it 
will open the script in the Inquisit Lab editor. If the script has any errors, it will be opened in the 
editor with the errors displayed below in the message list. Otherwise, the test will run. 
 
2. You can also open a script by first launching Inquisit Lab by double-clicking the Inquisit Lab 
icon on your desktop. You can then select the “Open at test...” command from the Start Page, 
and then select your script using the File Open dialog. Inquisit will open the script in the editor, 
where you can make any desired changes. If you wish to run the script, simply click the Run 
button on the toolbar at the top (it’s the button with the “play” icon). If the script has any errors, 
these will be displayed below the editor in the message list. Otherwise, the test will run.  
 
Alternatively, if you simply wish to generate a sample data file from our script, you can use the 
“Run Monkey” command, and Inquisit will automatically run your script providing random 
responses. This is a convenient way to generate sample data, particularly for tests that take a 
long time to run. 

Using Image, Video, Sound, HTML, and Other Media Files 
Many Inquisit tests make use of media such as images, video, sound, or HTML files. When you 
download a test from the Millisecond Test Library that requires other files, these are all bundled 
together into a single “iqzip” file. An “iqzip” file is just a standard zip file with the extension 
changed to “iqzip” so that it can be linked with Inquisit when you double-click it to open it. The 
first time you open an iqzip file with Inquisit Lab, Inquisit will do the following: 
 

1. Automatically unzip all of the files into a folder named after the iqzip file (for example, 
“bart.iqzip” will be unzipped into a folder named “bart”.) 

2. Delete the original iqzip file. 
3. Open the script file contained in the iqzip file in the editor 

 
The script file and media files that it uses are thus unzipped to the same folder. By saving the 
files to the same folder, Inquisit can find the media files when you run the associated script. 
 
When you are creating a new script that uses external media files, it’s usually easiest to follow 
this same convention and keep all of the media files in the same folder as the script. If you try to 
run a script and you get an error about Inquisit not being able to find a file, that usually means 
the file is in a separate folder from the script, so Inquisit can’t find it. 



Inquisit Programmer’s Manual 
 

Page 9 
 

Accessing Data Files 
By default, Inquisit saves the data from a given test in a subfolder of the folder containing the 
test script. The subfolder is called “data”. Additional subfolders called “voicerecordings”, 
“screencaptures”, or “photocaptures” may be created for tests that utilize voice recording, 
screen captures, or that take photos. You can open the data files by simply double-clicking them 
in Windows Explorer or Mac Finder. Inquisit Lab will display them in a tabular editor similar to 
Excel. The editor will allow you to sort and filter the data as well as save them as an Excel 
spreadsheet (Windows only).  
 
If you run your script by first opening it in Inquisit Lab and clicking the Run button, when the 
script is complete it will return you to the Inquisit Lab editor, and links for each data file saved 
will be displayed in the Message List below the editor. Simply click the links to open the data 
files.  

Debugging Inquisit Scripts 
Inquisit Lab includes a number of tools to help you test and debug your scripts.  

Message List 
The message list is a critical tool when programming a script, providing feedback when Inquisit 
encounters problems during a script run. If you select Validate or Run from the menu and your 
script has errors, Inquisit will output a detailed error message to the Message List window at the 
bottom of the screen. If you double-click an error message, the editor will jump to the code for 
the element causing the error.  
 
The image below shows the Message List with a single error in it. The problem is that <values> 
doesn’t contain a definition for “countdelay”.  In the editor, you can see an error icon near the 
problematic code.  

The Debugger Watch Window 
When you are running a script in Inquisit Lab or Web, you can use the Debugger Watch Window 
to pause the script and check the current values of all of the properties defined for the script. 
This is handy for troubleshooting errors in calculations. To open the Debugger Watch Window, 
press the following keys while the script is running: 
 
Ctrl+D 
 
 
 



Inquisit Programmer’s Manual 
 

Page 10 
 

 
 
The Debugger Watch Window lists the names and values of all properties in the script. To find a 
given property, you can scroll the list or type the property name in the filter textbox, and only 
those properties matching your filter are displayed.  
 
The Debugger Watch Window can also be launched programmatically if you wish to inspect 
property values at a specific point in your script’s logic. The IQScript function for opening the 
window is as follows: 
 
script.debugbreak(); 

Running your code 
While programming a script, you will typically spend some time jumping back and forth between 
editing the code and running the script to test your changes. If the task you are programming is 
particularly long, it can be quite cumbersome to run the entire script just to view a single 
change. Inquisit provides a number of shortcuts to enable you to run just the code you are 
interested in testing.  
 



Inquisit Programmer’s Manual 
 

Page 11 
 

Aborting a Script 
You can abort a script in progress by pressing the following keys on the keyboard: 
 
Ctrl + Q 
 
Swipe a Z across the screen with 2 fingers on a touchscreen device.  
 
When this command is entered, Inquisit immediately ends the script and saves any data 
collected up to that point.  

Skipping a Block 
You can skip the remaining trials in the current block by pressing the following keys: 
 
Ctrl + B 

Running Specific Elements 
As a convenience for debugging and testing, Inquisit Lab enables you to run specific elements 
in your script in isolation rather than running the entire script. For example, you can run a given 
stimulus element, and Inquisit Lab will show how that stimulus appears on the screen 
independently of the rest of the script. Similarly, you can run specific trials and blocks in 
isolation.   
 
To run a given element, simply right-click on the element in the editor, and select the “Run 
<element name>” command, where <element name> is the name of the element you clicked on. 

Test Monkey 
One of the most useful tools for testing and debugging Inquisit scripts is the Test Monkey, which 
automatically runs your script and generates sample data without requiring a human to make 
any responses. By running the monkey, you can test your script for errors and generate data 
files that can be used to verify script logic, ensure trial counts are correct across conditions, and 
prepare for data processing and analysis.  
 
To run the Test Monkey, select the “Run Monkey” command from Inquisit Lab’s Tools menu. 
The monkey will run the test choosing randomly from any responses defined as valid for the 
task. When the monkey is finished, you’ll have data files from its session. For better simulations 
of human responding, the average response time, accuracy rate, and valid responses for the 
monkey can be configured in a given test script.  

  



Inquisit Programmer’s Manual 
 

Page 12 
 

The Inquisit Programming Language 
The Inquisit scripting language was designed for psychological experimentation, and much of 
the terminology used is taken from what you would find in a typical procedural section of a 
published article.  

Inquisit Markup Language (IQML) 
 
The language itself includes an object oriented markup language called IQML, which provides a 
simple, declarative syntax for specifying the objects or components of an experiment and linking 
them together. With IQML, you can create elements representing various pieces of an 
experiment including all of the stimuli presented to be presented, the different types of trials that 
present stimuli and measure responses, blocks that specify randomized or pre-ordered 
sequences of trials, and experiment which specifies the sequence of blocks to run. Other 
elements control presentation of task instructions, the data that are saved, lists for storing arrays 
of elements or values, and even elements for interacting with eye trackers. 

Elements and Attributes 
IQML provides a simple, convenient syntax for declaring the various objects of an experiment 
(referred to as “elements”) and setting properties on those objects (referred to as “attributes”).  
Elements are declared using open and close tags similar to those used in XML or HTML. For 
example, Inquisit has a shape element that can be declared as follows: 
 
<shape redbox> 
</shape> 
 
In this example, “shape” is the type of element, and “redbox” is the name of the element. Other 
elements that use the shape can refer to it using its name.  
 
Attributes are specified within open and close tags using a “/” followed by the attribute name 
followed by “=” which is then followed by the values to which the attribute is set. To continue 
with the shape example, we can set its type, color, and size using the corresponding attributes: 
 
<shape redbox> 
/ shape = rectangle 
/ color = red 
/ size = (20%, 20%) 
</shape>  
 
As you can see, the syntax for each attribute differs depending on the type of values the 
attribute takes. The /shape attribute can be set to rectangle, circle, or triangle. The /color 
attribute can be set to a named color such as red, or to specific values controlling the intensity 



Inquisit Programmer’s Manual 
 

Page 13 
 

of the red, green, and blue components. The /size attribute takes width and height values 
(usually specified as percentages of the screen) listed within parentheses.  
 
IQML is case-insensitive, so “redbox” and “RedBox” are considered the same name.  

Getting Help 
Within the Inquisit Lab editor, you can use autocomplete to get hints about the various elements 
available for declaration and the attributes available on a given element. If you type “<” in a free 
area of the script, you’ll see a list of all Inquisit elements. If you position your cursor inside an 
element declaration and type “/”, you’ll see a list of attributes supported by the element.  
 
If you hover the mouse above an attribute to see a tooltip showing the syntax and options for 
the attribute. You can also place the keyboard cursor on any attribute within an element, press 
the F1 key, and a help topic will appear showing even more details. 

Inquisit Scripting Language (IQScript)  
IQML provides a simple declarative framework for assembling elements together into an 
experiment or test. Although the object model is quite flexible and supports countless different 
paradigms, some procedures require custom calculations, conditional branching, or dynamic 
flow of events that adapt or change based on a participant’s performance. To support these 
types of events Inquisit uses a procedural scripting language called “IQScript” that enables you 
to define custom logic to control the behavior of the elements you’ve declared.  
 
The syntax of IQScript is modeled after that of JavaScript, with IQScript supporting a subset of 
the keywords and statements supported by JavaScript. As with JavaScript, lines of code are 
terminated with semicolons, and blocks of code are contained within curly braces {}. The 
language supports arithmetic operators +, -, *, and / for addition, subtraction, multiplication, and 
division. There are numerous built in functions such as sin, cos, abs for computing sine, cosine, 
and absolute values. IQScript also supports if-else if-else blocks for conditional code evaluation, 
and while loops for iteration. Properties of elements can be accessed using the dot (.) operator.  
 
The following example shows a trial element that uses IQScript for purposes of branching. For 
purposes of demonstration, we show only the /branch attribute. Other attributes that are typically 
defined on a trial for presenting stimuli, measuring a response, and determining whether the 
response was correct are hidden.  
 
<trial example> 
... 
/ branch = [  
 if (trial.example.correct == false) { 
  trial.example; 
 } 



Inquisit Programmer’s Manual 
 

Page 14 
 

 else if (trial.example.latency > 500) { 
  trial.responsetimewarning; 
 } 
] 
... 
</trial> 
 
In the example above, the /branch attribute, which allows you to conditionally branch to a 
specific trial after the given trial is finished, is set to a code block contained within brackets [ ]. 
The code contains an if statement checking whether a correct response was made on the trial. If 
not, the trial branches to itself, and thus the trial is repeated. If a correct response was given, 
the else if statement evaluates whether the response latency (i.e., response time) is greater 
than 500 milliseconds. If so, the trial branches to another trial called “responsetimewarning” 
which could, for example, display instructions encouraging the participant to respond faster.  
 
Like IQML, IQScript is case insensitive, so trial.example.latency is the same as 
Trial.Example.Latency. Programming with IQScript will be covered in more detail later.  

  



Inquisit Programmer’s Manual 
 

Page 15 
 

The IQML Object Model 
IQML is an object-oriented language. An Inquisit test consists of a number of objects (or 
elements, we’ll use these terms interchangeably in this manual) that are defined using IQML, 
optionally augmented with IQScript, and then combined to form the logical flow of the test. This 
approach differs from imperative or procedural languages (e.g., C) that use lists of instructions 
that flow in a sequential order.  
 
Each IQML object is designed to play a specific role, providing a high level programming 
interface that encapsulates its functionality and internally handles the nitty-gritty implementation 
details required to execute its role. Objects can be quickly declared (as elements) and 
configured (using attributes), and they can be combined together using attributes that reference 
other objects. For example, a trial element, which is responsible for presenting stimuli and 
recording a response, has attributes that reference stimulus elements. A block element, which is 
responsible for running sets of trials, can refer to both trial elements and instruction page 
elements. The first step in mastering IQML is thus to understand the key objects that are 
available, and how they relate to other objects.  
 
TODO: Insert Object Model Diagram here    

Defaults 
The defaults element enables you to set both default values and global properties that apply to 
the entire script. There are two attributes on the defaults element that should always be defined. 
These two attributes are listed in the example below: 
 
<defaults> 
/ canvasaspectratio = (4, 3) 
/ fontstyle = (“Arial”, 2%) 
/ screencolor = black 
/ inputdevice = mouse 
</defaults> 

canvasaspectratio 
The first attribute is canvasaspectratio. This attribute is critical if you will be running your 
experiment on displays of different sizes, resolutions, and shapes, which is to be expected if you 
are testing over the web. Whatever the particular dimensions of the display running your test, 
canvasaspectratio specifies that the canvas for presenting visual stimuli should be the largest 
rectangle available on the given display that has the specified width to height ratio. By 
constraining Inquisit to use the same aspect ratio on all displays, you can ensure that the 
relative layout and size of visual stimuli on each screen will be the same.  
 
Insert images here 



Inquisit Programmer’s Manual 
 

Page 16 
 

 

fontstyle 
The second attribute is fontstyle, which specifies the default font family and font height to use for 
all text presented by your script. Note the font height is specified as a percentage of screen 
height. Although Inquisit also supports specifying sizes in pixels, using percentages for all of 
your size and position settings is critical for ensuring that relative layout and size of your visual 
stimuli are the same across different screens. If you need a different size for a particular block of 
text, you can override this setting using the /fontstyle attribute of the specific element. Later we’ll 
show how to override the default fontstyle, including using bold and italics, for particular 
elements. 

screencolor 
The screencolor attribute specifies the background color of the screen to use throughout the 
experiment. By default, the background color is white.  

inputdevice 
Inquisit supports a variety of response modalities, including keyboard, mouse, voice, and 
joystick, with keyboard being the default modality. If your test will mostly be using the mouse or 
voice recording, you can change the default modality using this attribute. For tests that use 
multiple modalities, this value can be overridden in specific trials or blocks of trials.  
 
Note that Inquisit will automatically adapt the specified modality depending on the type of device 
it is running on. For example, if /inputdevice is set to keyboard, when Inquisit runs on an iPad, 
Android or Microsoft Surface device with no keyboard attached, a response bar will be 
displayed at the bottom of the screen with buttons corresponding to the valid response keys. 
Participants can then respond by touching the buttons on the response bar. 

windowsize 
Another important attribute of the defaults element is windowsize, which we’ve added to the 
example below.  
 
<defaults> 
/ canvasaspectratio = (4, 3) 
/ fontstyle = (“Arial”, 2%) 
/ screencolor = black 
/ inputdevice = mouse 
/ windowsize = (95%, 95%) 
</defaults> 
 
By default, Inquisit runs all tests in fullscreen mode. If /windowsize is specified, the script will be 
run in a window of the specified size on Windows and Mac (full screen is always used on iOS 



Inquisit Programmer’s Manual 
 

Page 17 
 

and Android devices). This allows participants to switch to other windows or even end the test 
by clicking the window’s close button. Depending on your participants and research 
requirements, these features may be advantageous or disadvantageous. Note that again we 
specify the size in percentages, which in this example is a percentage of the display - 
specifically the window will be 90% of the width and height of the screen.  

Stimuli 
Inquisit supports presenting a variety of different kinds of stimuli. 
 

 

text 
The text element enables presentation of text to the screen, and includes attributes controlling 
the font, position, color, alignment, and whether text should be presented as a single line or 
multiline with automatic word wrapping. Below is a simple example: 
 
<text example> 
/ items = (“Hello World”) 
/ fontstyle = (“Arial”, 5%) 
/ position = (50%, 25%) 
/ txcolor = white 
/ txbgcolor = black 
</text> 
 



Inquisit Programmer’s Manual 
 

Page 18 
 

The example presents “Hello World” as a single line centered at the point of the screen 
corresponding to the horizontal center (50%) and at the middle of the upper half of the screen 
(25%). The origin (0%, 0%) is always the upper left corner of the screen with (100%, 100%) 
representing the bottom right of the screen. The font is Arial, and the height of the text is 5% of 
the vertical height of the screen (or window if /windowsize has been specified). The text is 
printed in white against a black background.  
 
A text element can be used to present a single item of text, or it can select from a set of items. 
Selection can be configured to be random, sequential, synchronized with the selection of 
another stimulus or list, or determined by a custom expression. 

picture 
The picture element enables presentation of image files in a variety of formats, including JPG, 
PNG, GIF, and BMP.  
 
<picture example> 
/ items = (“helloworld.jpg”) 
/ position = (75%, 75%) 
/ size = (20%, 20%) 
</picture> 
 
With the picture element, the items specify the file name of the image to display. In the above 
example, the picture presents an image file named “helloworld.jpg” which is assumed to be 
located in the same folder as the script. The image is displayed in the bottom right quadrant of 
the screen (or window). The image is sized to fit within a bounding rectangle representing 20% 
of the width and height of the screen. The aspect ratio of the image is always preserved.  

shape 
The shape element presents circles, ellipses, rectangles, and triangles. 
 
<shape example> 
/ shape = triangle 
/ position = (25%, 25%) 
/ size = (30%, 15%) 
/ color = red 
</shape> 
 
In the above example, a red isosceles triangle is presented in the upper left quadrant of the 
screen or window. The base of the triangle is 30% of the width of the screen, and the height is 
15% of the height of the screen. The /shape attribute controls which shape to present. Options 
are rectangle, circle, and triangle.  



Inquisit Programmer’s Manual 
 

Page 19 
 

video 
The video element plays videos in a variety of formats, although MP4 is the recommended 
format for presenting videos that will work on different platforms.  
 
<video example> 
/ items = (“helloworld.mp4”) 
/ position = (75%, 50%) 
/ size = (25%, 25%) 
/ loop = true 
</video> 
 
In the above example, a video file named helloworld.mp4 is presented vertically centered on the 
right half of the screen. The file is assumed to be located in the same folder of the script. The 
video is sized to fit in a bounding rectangle equal to 25% of the width and height of the screen or 
window. The aspect ratio of the video is always preserved - i.e., the video is not stretched to the 
exact size of the rectangle. The /loop attribute specifies that the video should continuously 
replay whenever it finishes.  

html 
The html element presents html pages on the screen.  Although the element supports older 
versions of html, the recommended format is HTML 5 for consistent presentation across 
different platforms. 
 
<html example> 
/ items = (“helloworld.htm”) 
/ position = (50%, 50%) 
/ size = (90%, 90%) 
/ showborders = false 
/ showscrollbars = true 
</html> 
 
In the above example, the element presents an html file called helloworld.htm. The page is 
centered on the screen and sized to 90% of the height and width of the screen, leaving a 5% 
margin on all sides. The page is presented without any borders (/showborders = false), and 
scrollbars will be displayed if the page extends beyond the bounding rectangle (90%, 90%). 

clock 
For timed tasks, a clock can be presented on the screen in stopwatch mode to indicate how 
long a participant has spent on a given response, or in timer mode to indicate how long the 
participant has left to respond in cases where a time limit is imposed.  
 
<clock example> 



Inquisit Programmer’s Manual 
 

Page 20 
 

/ mode = timer 
/ format = (“ss:zzz”) 
/ timeout = 10000 
/ position = (90%, 90%) 
/ size = (20%, 20%) 
/ txcolor = white 
/ txbgcolor = black 
</clock> 
 
In the above example, the clock functions as a timer counting down from 10000 milliseconds, 
which is the value specified by the /timeout attribute. The /format attribute specifies that the 
clock should display the remaining time in seconds and milliseconds. The clock is positioned in 
the lower right corner of the screen, with the numbers displayed in white against a black 
background.  

sound 
For tasks involving an audio component, the sound element enables you to play wav files. 
Inquisit uses high performance APIs to present sound with as little lag as can be achieved on a 
given device.  
 
<sound example> 
/ items = (“helloworld.wav”) 
/ playthrough = true 
</sound> 
 
In the above example, the sound element presents a wav file called helloworld.wav. The 
/playthrough attribute specifies that the wav file should be played to completion on a given trial, 
even if the participant responds before it has finished.  

Positioning and Layout of Visual Stimuli 
Visual stimuli in Inquisit all share a set of attributes that give you more fine-tuned control over 
the positioning and layout on the screen. We’ve already covered the /position attribute, which 
specifies the point on the screen where a stimulus should be displayed. By default, stimuli are 
horizontally and vertically centered around that point. Using the /halign and /valign attributes, 
you can override the default alignment.  
 
The /halign attribute has three possible values: 

● center: Stimuli are horizontally centered around the position point (default) 
● left: Stimuli are left-aligned to the position point 
● right: Stimuli are right-aligned to the position point. 

 
The /valign attribute also has three options: 

● center: Stimuli are vertically centered around the position point (default) 



Inquisit Programmer’s Manual 
 

Page 21 
 

● top: Stimuli are top-aligned to the position point 
● bottom: Stimuli are bottom-aligned to the position point. 

 
Using the alignment attributes, you can layout stimuli in a variety of ways. For example, if two 
stimuli are meant to be immediately adjacent to each other, they could be left- and right-aligned 
on the same position point, or top- and bottom-aligned around a point. If a stimulus should be 
displayed in the upper left corner of the screen, it could be top- and left-aligned around a 
position point of (0, 0).  

Erasing Stimuli  
When stimuli are presented on a given trial, by default they are erased from the screen when 
the participant responds. Similarly, sounds are stopped when a response is made. Using the 
/erase attribute, you can control whether and how a stimulus should be erased.  
 
By setting /erase = false, a stimulus will not be erased. For example, consider the following text 
element:  
 
<text reminder> 
/ items = (“Remember to respond as quickly as you can!”) 
/ fontstyle = (“Arial”, 3%) 
/ position = (50%, 25%) 
/ txcolor = white 
/ txbgcolor = black 
/ erase = false 
</text> 
 
This presents a reminder to participants to respond as quickly as they can. This reminder will 
remain on the screen for subsequent trials unless one of those trials happens to overwrite it with 
another stimulus. 
 
The /erase attribute also allows you to customize the color used to erase a visual stimulus. By 
setting /erase = true(blue), the visual stimulus is painted over with blue when it is erased.  

item 
In the examples above, the actual stimulus items to be presented (e.g., words, images, videos, 
etc.) are defined in the /items attribute. In many tests, however, different stimulus elements may 
refer to the same set of items. For example, consider a procedure in which a set of images 
could be presented in one of two positions on the screen. You would define two <picture> 
elements, one for each position, that would have the same set of images as in the example 
below.  
 
<picture leftposition> 
/ items = (“1.jpg”, “2.jpg”, “3.jpg”, “4.jpg”, “5.jpg”, “6.jpg”) 



Inquisit Programmer’s Manual 
 

Page 22 
 

/ size = (20%, 20%) 
/ position = (25%, 50%) 
</picture> 
 
<picture rightposition> 
/ items = (“1.jpg”, “2.jpg”, “3.jpg”, “4.jpg”, “5.jpg”, “6.jpg”) 
/ size = (20%, 20%) 
/ position = (75%, 50%) 
</picture> 
 
While this is perfectly valid, it can make a script cumbersome to update. For example, if we 
decide to replace an image with a different one, we have to remember to replace it in both of the 
<picture> elements.  
 
Alternatively, we can define the items once using the <item> element, which can then be shared 
by multiple stimulus elements. The syntax of the <item> element is simple. Each item is simply 
listed using the item’s ordinal position as an attribute. For example, consider the following 
<item> definition: 
 
<item images> 
/1="1.jpg" 
/2="2.jpg" 
/3="3.jpg" 
/4="4.jpg" 
/5="5.jpg" 
/6="6.jpg" 
</item> 
 
The <item> element must have a name, in this case “images”. The item includes the same 6 
image files (1.jpg through 6.jpg) as before, each defined by a corresponding numeric attribute 
(/1 through /6). Each file name must be enclosed in quotes.  
 
Having declared this <item> element, we can now refer directly to it from the /items command of 
a given stimulus. For example: 
 
<picture leftposition> 
/ items = images 
/ size = (20%, 20%) 
/ position = (25%, 50%) 
</picture> 
 
<picture rightposition> 
/ items = images 
/ size = (20%, 20%) 



Inquisit Programmer’s Manual 
 

Page 23 
 

/ position = (75%, 50%) 
</picture> 
 
Both <picture> elements now draw from the same set of items, defined once in the <item> 
element. 

Trials 

The trial element is at the core of the Inquisit language. Trials can play a number of roles, but 
their primary role is to present stimuli to the screen according to a given schedule, and to 
measure a participant’s response to those stimuli, whether the response is made by pressing a 
key, clicking a mouse, touching a screen, maneuvering a joystick, or pressing a button on a 
response box. The trial element has numerous attributes for handling various types of tasks. 
Think of it as a Swiss Army knife for cognitive tests.  

Presenting Stimuli 
One of the most powerful features of the trial is the ability to present precisely timed stimuli to 
participants. The trial element can present any of the stimuli covered above. It can synchronize 
multiple stimuli to be presented at the same time, and it can present very rapid sequences of 
stimuli. 
 
To understand how stimulus presentation works in Inquisit, it’s helpful to understand the basics 
of how the ubiquitous LED screens on all of our computerized devices update the screen. 
Computerized displays do not continuously update the screen. Instead, they draw to the screen 
using discrete frames, each of which is separated by a constant time interval. In this way, they 



Inquisit Programmer’s Manual 
 

Page 24 
 

are analogous to flip book animations, where each page contains a separate drawing, and when 
you flip through the pages quickly, the drawings blend together to create a continuous 
animation. LED screens (and the CRTs that came before them) work much the same way. 
 
A typical LED screen repaints itself once every 16.667 milliseconds, or at a rate of 60 times per 
second, or 60hz. This rate is referred to variably as the “refresh rate”, “frame rate”, or “vertical 
retrace rate” of the monitor. Many screens support faster modes, such as 70 or 75hz. Some 
high-end monitors designed for gaming or research can refresh at 200hz (once every 5 ms).  
 
An important implication of this design is that the refresh rate determines the shortest possible 
duration a stimulus can be presented. For example, the shortest duration that a visual stimulus 
can be presented on a 60hz monitor is 16.667 milliseconds, which is the duration of a single 
frame. To achieve this, a stimulus must be painted to the screen on one frame and then erased 
from the screen on the very next frame, which happens 16.667 milliseconds later. The 60hz 
monitor can not erase the stimulus any more quickly than that.  
 
The concept of a refresh rate is built into the Inquisit trial element. Specifically, the trial allows 
you to schedule stimuli at successive frames, with frame 1 being the first on a given trial. All 
stimuli, including non-visual stimuli are synchronized with the refresh rate of the monitor. This 
gives you precise control over the timing of presentations within the physical constraints of the 
display hardware. 
 
The attribute for specifying the stimulus presentation sequence is /stimulusframes. For each 
frame starting at 1, one or more stimuli can be scheduled for presentation using the following 
syntax:   
 
<trial auditoryactiontime> 
/ stimulusframes = [1=ready,reminder; 30=tone] 
</trial> 
 
In the above example, two stimuli named “ready” and “reminder” are presented on the first 
frame. On the 30th frame (500 ms on a 60hz monitor), a tone is played after which stimulus 
presentation is complete, and the trial waits for a yet-to-be-defined response.  
 
The example below shows a subliminal priming procedure: 
 
<trial priming_pos_pos> 
/ stimulusframes = [1=fixation; 30=forwardmask;31=prime;32=backwardmask;33=target] 
</trial> 
 
A fixation stimulus is presented on the first frame. At the 30th frame, a forward mask is 
presented, which is overwritten on the next frame by a prime, which is overwritten on the next 
frame by a backward mask. The prime stimulus is thus sandwiched in time between the forward 



Inquisit Programmer’s Manual 
 

Page 25 
 

and backward mask. On the 33rd frame, a target stimulus is presented which remains on the 
screen until a response is given. 
 
As a convenience, the trial element also allows you to schedule stimuli in terms of milliseconds 
instead of frames using the /stimulustimes command. Using /stimulustimes, the masked priming 
example above could be specified as follows: 
 
<trial priming_pos_pos> 
/ stimulustimes = [0=fixation; 500=forwardmask; 517=positiveprime; 533=backwardmask; 
550=positivetarget] 
</trial> 
 
If stimuli are specified at a time that falls between the boundards of a refresh interval, the actual 
presentation time is rounded up or down to the nearest frame boundary. If, for example, two 
stimuli are presented at 10 and 15ms on a 60hz monitor, both presentation times would be 
rounded up to 16.7 ms - i.e., the second frame - and would thus be presented simultaneously. 

Measuring Responses  
The trial element includes a number of attributes that specify the response modality, which 
responses are recognized as valid, and which responses are considered correct. Continuing 
with the masked priming example, we’ll add three new attributes to the trial to control these 
parameters. 
 
<trial priming_pos_pos> 
/ stimulustimes = [0=fixation; 500=forwardmask; 517=positiveprime; 533=backwardmask; 
550=positivetarget] 
/ inputdevice = keyboard 
/ validresponse = (“e”, “i”) 
/ correctresponse = (“e”) 
</trial> 

inputdevice 
The /inputdevice attribute allows you to specify the response modality used for the trial. If this 
attribute is not specified, the trial will use the /inputdevice value specified in the <defaults> 
element. If /inputdevice is not specified on the <defaults> element, it falls back to the keyboard 
as the default.  

validresponse 
The /validresponse attribute specifies which responses are considered meaningful or valid 
responses on the given trial. The responses are listed within parentheses and can include any 
number of responses. The values that can be listed here depend on the /inputdevice. Inquisit 
supports multiple input devices, including keyboards, mice, touchscreens, game controllers, 



Inquisit Programmer’s Manual 
 

Page 26 
 

voice key, speech, Cedrus devices, custom response boxes, and even gaze points from an eye 
tracker.  
 
With /inputdevice=keyboard, you can specify the character (in quotes) corresponding to the key 
on the keyboard. The example above shows a 2-choice response paradigm, where the two valid 
responses are the “e” and “i” key. Once either of these responses is made, the trial is complete 
and the next trial is run. 
 
For keys that don’t have a character value (e.g., Delete, Shift), you can alternatively specify the 
numeric scan code of the keys in /validresponse. To determine the scan code of a key, open 
Inquisit Lab and select the “Keyboard scancodes...” command from the Tools menu. You can 
then press any key on the keyboard, and it will display its scancode.  
 
With /inputdevice=mouse, you can specify the names of any visual stimuli presented on that 
trial. If the participant clicks on any of the listed stimuli, it is considered a valid response for the 
trial. You can also use the mouse as a simple buttonbox where clicking the left or right button is 
considered a valid response. 
 
Note that if /inputdevice is set to keyboard or mouse, Inquisit automatically adapts these 
response modes to run on touchscreen devices that don’t have a separate keyboard or mouse 
plugged in. For keyboard input, Inquisit shows a response bar at the bottom of the touchscreen 
with valid keys represented as buttons. Participants can thus touch a button instead of pressing 
a key. For mouse input, participants can touch target stimuli on the screen instead of mouse-
clicking them. 

correctresponse 
The /correctresponse attribute specifies which (if any) responses should be scored as correct. 
The syntax is similar to the /validresponse command, with correct responses listed within 
parentheses. Here, too, the values that can be listed depend on /inputdevice. In the example, 
the “e” key is considered the correct response of the two choices. 

Measuring Response Time 
By default, a trial starts listening for responses as soon as its last stimulus frame is presented. 
Responses made before all frames have been presented are simply ignored. The trial 
automatically measures the response time, or “latency” as it’s referred to within the Inquisit 
language, starting from the point at which the last frame is presented. Response times are 
measured in milliseconds. In the above example, if the participant presses the “i” key exactly 
435 milliseconds after the positivetarget stimulus is presented, the latency is recorded as 435. 

Specialized Trials 
Inquisit offers a number of specialized trials to support different forms of responding, such as 
moving a slider, entering text, or selecting from a fixed number of choices. These specialized 



Inquisit Programmer’s Manual 
 

Page 27 
 

trials can be thought of as subclasses of the trial element, and as such, they can be defined and 
referenced and used anywhere in the script as trials. 

Openended 
The openended element is a specialized trial designed for text entry. The trial presents a text 
box where participants can type responses, and a button to submit their response. Responses 
can be constrained by length or format such as valid numbers and dates.  
 
<openended example> 
/ stimulusframes = [1=questions] 
/ multiline = true 
/ required = true 
/ position = (50%, 70%) 
/ size = (30%, 20%) 
</openended> 
 
In the above example, the openended trial presents a stimulus called “questions”. It then 
presents a multiline textbox at the coordinates corresponding to the specified size and position. 
The /required attribute is set to true, indicating that participants must enter at least one 
character of text in order to advance.  

Slidertrial 
The slidertrial element enables participants to select a value by moving an indicator along a 
slider scale.  
 
<slidertrial example> 
/ stimulusframes = [1=questions] 
/ orientation = horizontal 
/ range = (-50, 50) 
/ labels = ("cold", "hot") 
/ showticks = true 
</slidertrial> 
 
The above slidertrial presents a stimulus called “questions” and a horizontal slider control. The 
numeric range of the slider is from -50 to 50, left to right, with 0 as the center point. Two labels 
are presented, “cold” on the left end of the scale and “hot” on the right end. Ticks are displayed 
along the slider control in increments of 1 unit. 

Likert 
On likert trials, participants respond by selecting one of an array of options.  
 
<likert example> 



Inquisit Programmer’s Manual 
 

Page 28 
 

/ stimulusframes = [1=questions] 
/ anchors = [1="Never"; 3="Sometimes"; 5="Always"] 
/ numpoints = 5 
/ buttonvalues = [1="-2"; 2="-1";3="0";4="1";5="2"] 
/ position = (50%, 75%) 
</likert> 
 
They above likert trial presents a single stimulus called “questions” along with a 5-point likert 
scale on the lower half of the screen with values ranging from 1 to 5. Text anchors “Never”, 
“Sometimes”, and “Always” appear at the first, third, and fifth positions on the scale. Scales 
are presented as a line of buttons which participants can click to respond and move to the 
next trial. 

Blocks 
The block element is responsible for running sets of trials. The block can be configured to run 
trials representing the same condition of an experiment, or it can support mixed block designs in 
which trials representing different conditions are run. The order of trials can be a fixed sequence 
or random, a combination of the two, or random with constraints such as avoiding runs of the 
same type of trial or repeating trials on which an error is made. Blocks can present instructions 
pages to be displayed before the trials begin or after they are finished.  
 
A typical experiment may run a set of practice blocks that progressively instruct participants how 
to perform a task. For example, a two-choice priming task might start with a practice block in 
which only targets are presented in order to familiarize them with the basic categorization task. 
The practice block could be configured to repeat itself until the participant’s performance meets 
criterion. The next practice block would introduce the primes, instructing participants to ignore 
them and continue responding to the targets as before. Once performance meets criterion, the 
task can move on to test blocks in which priming effects are measured. 
 
The example below continues the categorical priming task we started above. The block 
implements a mixed-block design that runs trials representing all four combinations of primes 
and targets, including congruent trials (priming_pos_pos/priming_neg_neg) and incongruent 
trials (priming_pos_neg, priming_neg_pos). A total of 40 trials are run in random order. If 
possible, Inquisit will ensure that each type of trial is run the same number of times. In this case, 
since we are running 20 trials that are randomly selected from 4 types of trials, each type will be 
run exactly 5 times in the block.  
 
<block evaluative_priming_test> 
/ preinstructions = (page1, page2) 
/ trials = [1-20 = random(priming_pos_pos, priming_neg_neg, priming_pos_neg, 
priming_neg_pos)] 
/ postinstructions = (rest) 
</block> 



Inquisit Programmer’s Manual 
 

Page 29 
 

preinstructions 
The /preinstructions attribute lists a set of instruction pages to present at the beginning of the 
block before the trials are run. The pages are named “page1” and “page2” and are presented in 
the given order (we’ll cover how to define instruction pages later). Instruction pages can consist 
of paragraphs of plain text or html pages consisting of richly formatted text, images, etc.  

trials 
The /trials attribute specifies the set of trials to run in the block. Not only does the trial specify 
how many trials to run, but also which trials and in what order. Sequences of trials such as “1-
20” as in the above example can be assigned to a single trial or to a set of randomly selected 
trials (as above). Alternatively, if the order is meant to be fixed, each trial can be specified 
individually, for example: 
 
/trials = [1=priming_pos_pos;2=priming_neg_neg;3=priming_pos_neg;4=priming_neg_pos,...] 
 
Or more conveniently: 
 
/trials = [1, 5, 9, 13, 17 = priming_pos_pos; 
2, 6, 10, 14, 18 = priming_neg_neg; 
3, 7, 11, 15, 19 = priming_pos_neg; 
4, 8, 12, 16, 20 = priming_neg_pos] 
 
Note that the entire trial sequence is contained within square brackets “[ ]”, and that each subset 
in which trial numbers are assigned to trials must be separated by a semi-colon “;”.  

postinstructions 
The /postinstructions attribute specifies any instruction pages to be presented after all trials 
have been run. The syntax is the same as /preinstructions.  

Expt (experiment) 
The expt element allows control of sequences of blocks. The order of blocks can be a fixed 
sequence or random, a combination of the two, or random with constraints such as avoiding 
runs of the same type of block. Expts can present instructions pages to be displayed before the 
blocks start and after they are finished.  
 
The example below continues with the evaluative priming task. A total of seven blocks are run. 
The first block allows participants to practice classifying target stimuli only. The second block 
gives participants a chance to practice with prime stimuli. The remaining blocks run test trials of 
the evaluative priming task.  
 
<expt evaluativepriming> 



Inquisit Programmer’s Manual 
 

Page 30 
 

/ preinstructions = (intro) 
/ blocks = [1=targets_practice;2=evaluative_priming_practice; 3-7=evaluative_priming_test] 
/ postinstructions = (thankyou) 
</expt> 

preinstructions 
The /preinstructions attribute lists a set of instruction pages to be presented at the beginning of 
the experiment before any blocks are run. An instruction page called “intro” is presented in the 
example.  

blocks 
The /blocks attribute specifies the set of blocks to run in the experiment. Not only does it specify 
how many blocks to run, but also which blocks and in what order. Sequences of blocks such as 
“3-7” in the above example can be assigned to a single block (as above) or to a set of randomly 
selected blocks. Alternatively, if the order is meant to be fixed, each block can be specified 
individually, as in the first and second practice blocks.  
 
The syntax of /blocks is the same as for /trials. The entire block sequence is contained within 
square brackets “[ ]”, and each subset in which block numbers are assigned to blocks must be 
separated by a semi-colon “;”.  

postinstructions 
The /postinstructions attribute specifies any instruction pages to be presented at the end of the 
experiment. In the above example, a “thankyou” page is displayed which informs the participant 
the test is over and thanks them for participating. The syntax is the same as /preinstructions.  

Presenting Instruction Pages 
The IQML language includes a set of elements designed for easy presentation of task 
instructions pages. The pages are presented with built-in navigation buttons for moving back 
and forth between sequences of instructions. No data are recorded while participants browse 
the instructions.  
 

instruct 
The <instruct> element provides central control over how all task instruction pages are 
displayed on the screen during the test. The element controls the size of instruction pages, the 
font used for text pages and navigation buttons, whether a back button is displayed for returning 
to previous pages, and whether participants navigate using the keyboard or mouse.  
 
 



Inquisit Programmer’s Manual 
 

Page 31 
 

Figure 3. An example of an HTML instruction page in Inquisit. 

 
 
The following example sets the font, text and background color, and size of instruction pages.  
 
<instruct> 
/ fontstyle = ("Arial", 5%, true) 
/ txcolor = white 
/ windowsize = (90%, 90%) 
/ screencolor = black 
</instruct> 

page 
The page element defines a single page of plain text instructions. The text is automatically 
wrapped to fit into the instructions window. Line breaks can be inserted to separated blocks of 
text. The entire page of text is presented in the color and font specified in the /txcolor and 
/fontstyle attributes of the <instruct> element. To present text with different colors, fonts, and/or 
styles, you can format your instructions using HTML and present them using <htmlpage> 
element. 
 
An example of the element is given here: 
 
<page intro> 
Welcome to the Evaluative Priming Task.  
 



Inquisit Programmer’s Manual 
 

Page 32 
 

The approximate duration of this task is 10 minutes.  
 
When you are ready to start, click the Continue button. 
</page> 
 
Unlike other elements, <page> does not have any attributes. Rather, the text that should be 
displayed on the page is simply entered between the open and close tags. Line breaks 
appearing within the tags will also appear when the page is displayed. You can also insert line 
breaks using the “~” character.  
 
Finally, with Inquisit 6, page text can also be formatted using a simple, limited subset of HTML. 

htmlpage 
The htmlpage element supports presenting instruction pages formatted with HTML. The element 
allows you to utilize the full power of HTML to present rich instructions with different colors and 
styles, tables, media such as images and video, and anything else you might find on a web 
page. 
 
The <htmlpage> element has a single attribute, the /file attribute which is set to the file name of 
the HTML page to present. For example, the following <htmlpage> displays a file called 
“intro.htm”.  
 
<htmlpage> 
/ file = “intro.htm” 
</htmlpage> 

Data element 
The data element specifies which data should be recorded at the end of each trial. The data file 
thus contains a single line/row of data for every trial that is run. We refer to this data file as the 
“raw” data file. There can be only one data element defined in a given script.  
 
By default, the raw data file is saved into a folder called ‘data’ that is located in the same folder 
as the script. The file name will be that of the script with “_raw” appended to it and the “iqdat” file 
extension. For example, if the script file name is “racismiat.iqx”, the raw data file will be named 
“racismiat_raw.iqdat”.  
 
The contents of this file are defined by the data element, as in the example: 
 
<data> 
/ columns = (date, time, subject, group, blockcode, trialcode, trialnum, response, latency, 
correct, stimulusitem1, stimulusitem2, stimulusitem3, stimulusitem4, stimulusitem5) 
/ separatefiles = true 



Inquisit Programmer’s Manual 
 

Page 33 
 

</data> 

columns 
The columns attribute defines the fields or columns of data that are saved. At a minimum, the 
raw data file should record the columns listed in the example above. Starting from left to right, 
the columns in the example are defined as follows: 
 

date The date the session was started 

time The time the session was started 

subject A unique identifier of the participant 

group The group number used in this session (for 
tests involving between-subject variables) 

blockcode The name of the current block 

trialcode The name of the current trial 

trialnum The ordinal number of the trial 

response The response made by the participant 

latency The response time in milliseconds 

correct Whether or not the response was correct 

stimulusitem1 through stimulusitem5 The particular item presented on the trial for 
the first, second, third, fourth, and fifth 
stimulus.  

 
The stimulusitem columns deserve a bit more explanation as they work somewhat differently 
than the rest. Consider the masked priming trial as an example: 
 
<trial maskedpriming> 
/ stimulustimes = [0=fixation; 500=forwardmask; 517=positiveprime; 533=backwardmask; 
550=positivetarget] 
/ inputdevice = keyboard 
/ validresponse = (“e”, “i”) 
/ correctresponse = (“e”) 
</trial> 
 
Trial presents 5 different stimuli - a fixation, forward mask, a positive prime, backward mask, 
and a positive target. The stimulusitem1 column shows the current item of the first stimulus 
defined in the /stimulusframes, the fixation stimulus, which might be a plus sign “+” on each trial. 
The stimulusitem2 column records the second stimulus item in the sequence, which is the 



Inquisit Programmer’s Manual 
 

Page 34 
 

current forward mask, and which might be a row of Xs “XXXXXXXXXX” on each trial. The 
stimulusitem3 column records the current item of the third stimulus in the sequence, the prime, 
which might be randomly selected from list of evaluatively positive words, for example “LOVE” 
on one trial, “WONDERFUL” on the next trial, “HAPPY'' on the next trial, and so forth. 
Stimulusitem4 records the current item of the backward mask, which might be another row of Xs 
XXXXXXXXXX. Stimulusitem5 records the current item of the target stimulus, which might be 
randomly selected from a list of evaluatively positive words, e.g., “SMILE” on one trial, 
“LAUGHTER” on the next, “BEAUTIFUL” on the following, and so forth.  
 
For stimuli that select from a set of items, the stimulusitem row thus captures the particular item 
presented. By recording these data, it would be possible to do item level analysis of particular 
primes and targets.    

separatefiles 
Inquisit Lab will allow you to save data from different sessions in separate files or appended into 
a single data file. Inquisit defaults to saving data to separate files because this minimizes data 
loss due to file conflicts. Although a single file might be a convenient format for data analysis, 
we strongly recommend against using this option to avoid data loss. For example, if the single 
file is accidentally deleted or corrupted, then all data from all subjects is lost. If separate files are 
used, accidentally deleting a single file means that only a single subject’s data is lost. If a data 
file is opened and locked by another application, data from a session might not be saved when 
using a single file, but with separate files, a new file is created for each session so data 
recording can proceed.  
When you are ready to analyze the data, you can use Inquisit’s “Merge Data Files...” command 
available on the File menu to combine the separate files into a single file.  
 

Summary Data 
The <summarydata> element allows you to record a single line of summary scores for each 
participant at the end of the test. Typically, <summarydata> includes the final metrics for the 
test, whatever they happen to be, along with the group id, subject id, date and time the session 
started, and whether the entire test was completed. When the <summarydata> from multiple 
participants are combined, the result is a table of data that is conveniently formatted for 
statistical analysis.   
 
While the <data> element includes built-in columns (e.g., response, latency, stimulusitem), the 
<summarydata> element only supports recording the property values of various elements as 
columns (more on element properties later).  
 
In the example below, the <summarydata> element records a standard set of summary 
variables, including the date and time, subject id, group id, total time spent on the test, the 
computer platform (type of device used), and a value indicating whether the entire test was 



Inquisit Programmer’s Manual 
 

Page 35 
 

completed. In addition, a set of custom expressions called “da”, “db”, and “dc” that return the 
final scores for the test. The last expression, “percentcorrect”, records the overall percent 
correct for the task and can be used as a quick screener for participants who weren’t following 
instructions. 
 
<summarydata> 
/ columns = (script.startdate, script.starttime, script.subjectid,  
script.groupid, script.elapsedtime, computer.platform, values.completed, 
expressions.da, expressions.db, expressions.d, expressions.percentcorrect) 
/ separatefiles = true 
</summarydata> 

columns 
The columns attribute defines which properties are saved to the summary data file. Unlike the 
data element for raw data, the summary data element does not have any built-in columns. Only 
properties are supported. So, for example, instead of specifying “date”, you would specify 
“script.startdate”. 

separatefiles 
The separatefiles attribute works the same as in the data element. If true (default), the summary 
data from each session is saved to separate files. If false, Inquisit saves data to a single data 
file. For reasons spelled out above, you should always use the default setting so that separate 
files are used. 
 

  



Inquisit Programmer’s Manual 
 

Page 36 
 

Programming a Simple Test with IQML 
IQML provides a simple, declarative language for specifying the various components of a test 
and connecting them together. While most tests use IQScript in combination with IQML, it is 
certainly possible to program simple tests using only IQML. Having reviewed the language, we’ll 
now put the concepts together to program a working test - an Emotional Dot Probe.  
 

Emotional Dot Probe 
The Emotional Dot Probe we’ll program uses the following procedure. Pairs of negative and 
positive words are presented on the screen, one above the other, with negative and positive 
words randomly varying between upper and lower positions. The words are then replaced on 
screen with a dot appearing randomly in the upper or lower position, and participants must 
press one of two response keys to indicate which position it’s in. Accuracy and latency of 
responses are recorded. The test measures the extent to which negative or positive stimuli draw 
the participants’ attention, causing them to respond more quickly and accurately when the dot 
appears in the same position as a negative or positive word.  
 

Defining the Stimuli 
When creating a new script, you can start with any element. We generally find it easier to start 
by defining the core stimuli to be presented. In this case, the stimuli consists of two sets of 
words, one positively valenced and the other negatively valenced, which are defined below: 
 
 <item pleasant> 
/1 = "Marvelous" 
/2 = "Superb" 
/3 = "Pleasure" 
/4 = "Beautiful" 
/5 = "Joyful" 
/6 = "Glorious" 
/7 = "Lovely" 
/8 = "Wonderful" 
</item> 
 
<item unpleasant> 
/1 = "Tragic" 
/2 = "Horrible" 
/3 = "Agony" 
/4 = "Painful" 
/5 = "Terrible" 
/6 = "Awful" 



Inquisit Programmer’s Manual 
 

Page 37 
 

/7 = "Humiliate" 
/8 = "Nasty" 
</item> 
 
Next, we’ll define the text elements that refer to these item sets. Recall that both item categories 
can be presented in the upper or lower position, which requires us to define 2 X 2 = 4 different 
<text> elements. The positive <text> elements are defined as follows: 
 
<text pleasanttop> 
/ items = pleasant 
/ position = (50%, 45%) 
</text> 
 
<text pleasantbottom> 
/ items = pleasant 
/ position = (50%, 55%) 
</text> 
 
Both refer to the “pleasant” item set, presenting them at the horizontal center (50%) of the 
screen. The “pleasanttop” stimuli, however, are presented at 45% of the height of the screen 
(upper position) and the “pleasantbottom” stimuli are presented at 55% of the height of the 
screen (lower position).  
 
Next we’ll define the negative stimuli: 
 
<text unpleasanttop> 
/ items = unpleasant 
/ position = (50%, 45%) 
</text> 
 
<text unpleasantbottom> 
/ items = unpleasant 
/ position = (50%, 55%) 
</text> 
 
Both elements now refer to the “unpleasant” item set, presenting those words in the upper and 
lower positions respectively. 
 
The Emotional Dot Probe must also present a dot in either of the two positions. The dot stimuli 
can be defined using the <shape> element as follows: 
 
<shape probetop> 
/ shape = circle 
/ size = (.66%, 1%) 



Inquisit Programmer’s Manual 
 

Page 38 
 

/ color = grey 
/ position = (50%, 45%) 
</shape> 
 
<shape probebottom> 
/ shape = circle 
/ size = (.66%, 1%) 
/ color = grey 
/ position = (50%, 55%) 
</shape> 
 
Both <shape> elements present a grey circle, the height of which is .66% of the screen width 
and 1% of the screen height. (We use different percentages because most screens are wider 
than they are tall). Both dots are positioned in the same spot as the upper and lower word 
stimuli we previously defined.  
 
During the practice phase of our dot probe, we want to show error feedback to participants in 
the form of an error message. The error message is defined as follows, which presents the word 
“error” in red: 
 
<text errormessage> 
/ items = ("error") 
/ txcolor = red 
</text> 
 
Finally, we’ll define a fixation point that appears in the center of the screen between the upper 
and lower stimuli so that participants can be instructed not to focus attention on the upper or 
lower positions until the dot is presented. The fixation point is quite simple: 
 
<text fixation> 
/ items = ("+") 
</text> 
 
The fixation uses the default positioning for stimuli, which is in the center of the screen. It also 
uses the default font and color, which we’ll define below. 
 

Defining the Trials 
The trial elements are responsible for presenting the dot probe stimuli and measuring 
participants’ responses. A given trial can present the positive word in the upper or lower position 
(with negative words in the corresponding position), representing two conditions. The trial can 
also present the dot probe in the upper or lower position, representing another two conditions. 
We’ll thus need 2 X 2 = 4 different trial elements to capture the combination of conditions. The 



Inquisit Programmer’s Manual 
 

Page 39 
 

trial for the first combination with both the positive and dot probe in the upper position is defined 
below: 
 
<trial pleasanttop> 
/ stimulustimes = [0=fixation; 500=clearscreen, pleasanttop, unpleasantbottom; 
1500=clearscreen, probetop] 
/ validresponse = ("e", "i") 
/ correctresponse = ("i") 
/ posttrialpause = 500 
</trial> 
 
First let’s look at the /stimulustimes attribute. At 0 milliseconds (the start of the trial), the fixation 
point is presented on the screen. 500 ms later, a special built-in stimulus called “clearscreen” is 
presented along with the pleasanttop and unpleasantbottom stimuli. The clearscreen stimulus 
simply paints the entire screen to the background color, which erases our fixation point. At the 
same time the screen is erased, both the negative and positive words are presented. These 
remain on screen for 1000ms, before they are overwritten at the 1500 millisecond mark by 
another clearscreen accompanied by “probetop”, the dot probe shape in the upper position. 
 
Immediately after the last stimulus (“probetop”) is presented, Inquisit begins polling for a 
response from the participant (responses made prior to the dot probe presentation are simply 
ignored). The /validresponse attribute defines two possible responses for the trial, the “e” and “i” 
keys, indicating that the probe was in the lower or upper position respectively. All other key 
presses are ignored. The /correctresponse attribute defines the “i” key as correct for this trial, 
given that the probe is presented on top. 
 
The last attribute /posttrialpause specifies that at the end of the trial, Inquisit will pause for 500 
ms before advancing to the next trials. This defines our inter-trial interval, or ITI.  
 
The next 3 trial definitions are similar, varying only in the positions of the stimuli and which  
response is defined as correct. Note that on trials where the probe is presented in the lower 
position, the /correctresponse is “e” instead of “i”.  
 
The following figure captures the screen at the 500 millisecond time point when both the positive 
and negative words are displayed on the screen. 



Inquisit Programmer’s Manual 
 

Page 40 
 

 
 
<trial pleasantbottom> 
/ stimulustimes = [0=fixation; 500=clearscreen, pleasantbottom, unpleasanttop; 
1500=clearscreen, probebottom] 
/ validresponse = ("e", "i") 
/ correctresponse = ("e") 
/ posttrialpause = 500 
</trial> 
 
<trial unpleasantbottom> 
/ stimulustimes = [0=fixation; 500=clearscreen, unpleasantbottom, pleasanttop; 
1500=clearscreen, probebottom] 
/ validresponse = ("e", "i") 
/ correctresponse = ("e") 
/ posttrialpause = 500 
</trial> 
 
<trial unpleasanttop> 
/ stimulustimes = [0=fixation; 500=clearscreen, pleasantbottom, unpleasanttop; 
1500=clearscreen, probetop] 
/ validresponse = ("e", "i") 
/ correctresponse = ("i") 
/ posttrialpause = 500 
</trial> 
 



Inquisit Programmer’s Manual 
 

Page 41 
 

Defining the Blocks 
The test will entail two blocks, a shorter practice block enabling participants to learn the task, 
and a longer test block in which data collection trials will be run. The practice block is defined as 
follows: 
 
<block practice> 
/ preinstructions = (practice) 
/ trials = [1-20=noreplace(pleasanttop, pleasantbottom, unpleasanttop, unpleasantbottom)] 
/ errormessage = (errormessage, 300) 
/ recorddata = false 
</block> 
 
The /preinstructions attribute specifies that a single instruction page called “practice” should be 
presented at the start of the block (we’ll define this page later).  
 
The /trials attribute determines how many and which trials are run during the block. In this case, 
a total of 20 trials are run, randomly selected from the 4 different types of trials we defined 
above that make up the task. Since we’re using the “noreplace” option for randomization, 
Inquisit will ensure that each type of trial is run the same amount of times (5 times in this case).  
 
Since this is a practice block, we’ll want to give error feedback to participants so they can more 
easily learn the task. This is accomplished using the /errormessage attribute, which indicates 
that whenever a participant responds incorrectly, the “errormessage” stimulus defined above is 
presented for 300 milliseconds.  
 
Finally, because this is only practice, the /recorddata option is set to false so that data isn’t 
recorded during this block.  
 
Next, we’ll define the test block, which is quite similar to the practice block: 
 
<block test> 
/ preinstructions = (test) 
/ trials = [1-40=noreplace(pleasanttop, pleasantbottom, unpleasanttop, unpleasantbottom)] 
</block> 
 
As with practice, the block randomly selects from the 4 types of trials. However, it runs a total of 
40 trials instead of 20. Also, a different instruction page called “test” (defined below)  is 
presented at the start of this block.  

Defining the expt 
The <expt> element combines the blocks into a complete test or experiment. Below is the 
<expt> element for our dot probe task: 
 



Inquisit Programmer’s Manual 
 

Page 42 
 

<expt> 
/ preinstructions = (begin) 
/ blocks = [1=practice; 2=test] 
/ postinstructions = (summary, end) 
</expt> 
 
The /blocks attribute specifies the blocks to run -- first the practice and then the test block. In 
addition, the /preinstructions attribute presents an instruction page called “begin” at the start of 
the test, and two pages “summary” and “end” at the end of the test.  

Defining the instruction pages 
For our dot probe, we’ll use text instructions rather than HTML pages. To control the font, we’ll 
use the <instruct> element as follows: 
 
<instruct> 
/ fontstyle = ("Arial", 2%, false, false, false, false, 5, 0) 
</instruct> 
 
We’ll simply use the defaults setting for the font color, background color, page size, etc.  
 
The “begin”, “practice”, “test”, and “end” pages are all defined below. Note the use of the “^” 
character to force additional line breaks in the text. 
 
<page begin> 
Dot Probe Demo 
^^This sample demonstrates a simple dot probe task. On each trial, a fixation point '+' is 
presented for 500 ms, followed by two words, one pleasant and the other unpleasant, 
presented above and below the fixation point for 1000 ms. Both words are erased from the 
screen, and one is replaced with a gray dot.  
^^If the dot is in the upper position, press the 'i' key on the keyboard. 
^^If the dot is in the lower position, press the 'e' key on the keyboard. 
^^Respond as quickly and accurately as possible. 
</page> 
 
<page practice> 
^^The next 20 trials are practice trials so you can learn the task. An error message will be 
shown if you respond incorrectly.  
^^ As a reminder: 
^^If the dot is in the upper position, press the 'i' key on the keyboard. 
^^If the dot is in the lower position, press the 'e' key on the keyboard. 
</page> 
 
<page test> 



Inquisit Programmer’s Manual 
 

Page 43 
 

^^The next 40 trials are test trials. Please respond as quickly and accurately as possible. The 
error message will no longer be displayed after an incorrect response.  
^^ As a reminder: 
^^If the dot is in the upper position, press the 'i' key on the keyboard. 
^^If the dot is in the lower position, press the 'e' key on the keyboard. 
</page> 
 
<page end> 
^^^Test complete! 
</page> 
 
The “summary” page is intended to show the participant their average response times in the 4  
different conditions of the task. To do this, the page uses a feature that enables us to 
dynamically inject property values into the page. To insert a particular property value, simply 
add the full property name to the page surrounded by “<%” and “%>”.  When the page is 
displayed, the entire block including the delimiters will be substituted with the value of the given 
property.  
 
With the summary page, we display 4 different property values, each of which returns the 
average response latency for the 4 different trial types. The full property names start with the 
type of the object “trial”, followed by the name of the particular trial (e.g. “pleasanttop”), followed 
by the name of the property on that trial (“meanlatency”).  
 
<page summary> 
^^Performance summary: 
^^The following are average reaction times for 4 different conditions of the experiment: 
^^Dot replaces pleasant word on top: <% trial.pleasanttop.meanlatency %> milliseconds. 
^Dot replaces unpleasant word on top: <% trial.unpleasanttop.meanlatency %> milliseconds. 
^Dot replaces pleasant word on bottom: <% trial.pleasantbottom.meanlatency %> 
milliseconds. 
^Dot replaces unpleasant word on bottom: <% trial.unpleasantbottom.meanlatency %> 
milliseconds. 
^^Responses are typically faster on unpleasant trials because the unpleasant stimuli draw 
attention. 
</page> 
 
The end result looks like the following: 



Inquisit Programmer’s Manual 
 

Page 44 
 

 

Default values 
Next, we’ll define default settings for the dot probe: 
 
<defaults> 
/ fontstyle = ("Arial", 2%, false, false, false, false, 5, 0) 
/ canvasaspectratio = (4, 3) 
</defaults> 
 
The /fontstyle attribute specifies the default font to use for all text presented in the text. The 
/canvasaspectratio specifies the relative width and height of the subset of the screen to use as a 
canvas for presenting all stimuli. 

Data 
Finally, we’ll define the raw and summary data to record for this task. 
 
For the raw data, we’ll record the typical variables, including the type of trial (trialcode), the 
response that was given (response), whether the response was correct (correct), the response 
time (latency), as well as the particular stimulus items presented on each trial. Additionally, the 
/separatefiles attribute is true so that data from each session is saved in a separate file to 
minimize potential for data loss: 
 
<data> 



Inquisit Programmer’s Manual 
 

Page 45 
 

/ columns = (date, time, subjectid, groupid, sessionid, trialcode, trialnum, response, latency, 
correct, stimulusitem, stimulusitem, stimulusitem, stimulusitem) 
/ separatefiles = true  
</data> 
 
For summary data, we’ll record the average response times for each of the 4 types of trials. 
We’ll also record the overall percent correct to flag participants who didn’t follow instructions. 
 
<summarydata> 
/ columns = (script.startdate, script.starttime, script.subjectid, script.groupid, 
script.sessionid, trial.pleasanttop.meanlatency, trial.unpleasanttop.meanlatency, 
trial.pleasantbottom.meanlatency, trial.unpleasantbottom.meanlatency, 
block.test.percentcorrect) 
/ separatefiles = true 
</summarydata> 
 
That’s it! Our dot probe is finished. Of course, there are numerous ways we could enhance the 
test, such as automatically calculating the dependent measures or giving participants an 
opportunity to repeat the practice block. Such enhancements would be made possible using 
IQScript, which is designed to support dynamic and adaptive test procedures.  

  



Inquisit Programmer’s Manual 
 

Page 46 
 

Programming with IQScript 
In the previous chapters, we covered the IQML language and demonstrated how it could be 
used to program a simple dot probe test. As a declarative, object-oriented language, IQML 
provides an easy-to-use framework in which test procedures are created simply by declaring 
objects and setting their attributes. The IQML object model provides the building blocks of an 
experiment. The programmers task is to configure and assemble those blocks.   
 
The simplicity of IQML, however, comes at the expense of flexibility. With IQML, you are limited 
to the algorithms and procedures supported by the various IQML objects. What if your test 
requires logic that isn’t built into these objects? This is where IQScript comes in. IQScript is a 
simple imperative programming language that can be used in combination with IQML to add 
sophisticated custom logic to a given test procedure. With IQML + IQScript, you can program 
almost any test procedure in Inquisit.   
 
For those of you with any experience programming web pages, IQML + IQScript is directly 
analogous to HTML + Javascript. HTML provides a simple formatting language for static web 
pages. If all you need are pages with links to other pages, HTML has you covered. However, 
soon after Netscape released the first version of its browser back in 1994 and the world wide 
web started to take off, it quickly became clear that the web had potential to be much more than 
a network of interlinked documents. It could also be a means of building intelligent, interactive 
applications for shopping, banking, gaming, and more. Towards this vision, Netscape released 
the first version of Javascript in December of 1995. In 1997, Javascript was standardized by the 
ECMA and ISO standards organizations, and Microsoft added support for it to Internet Explorer. 
With Javascript support becoming widely available in browsers, static web pages evolved into 
applications with dynamic user interfaces that perform sophisticated tasks.  
 
Similar to Javascript and HTML, IQScript can be embedded into certain IQML attributes so that 
the code can be run in order to calculate performance metrics, change the procedural flow of an 
experiment, or implement any logic that isn’t built into IQML. Consider the following example:  
 
<text tooslow> 
/ onprepare = [ 
 text.tooslow.skip = true; 
 if(block.practice.meanlatency > 1000) 

{ 
 text.tooslow.skip = false; 
} 

] 
/ items = (“Please respond more quickly!”) 
/ txcolor = red 
/ position = (50%, 75%) 
</text> 
 



Inquisit Programmer’s Manual 
 

Page 47 
 

At the beginning of each trial, Inquisit prepares each stimulus in the trial for presentation. At the 
beginning of this preparation process, Inquisit executes the IQScript code (if any) defined in the 
/onprepare attribute of the stimuli. It then finishes up preparation and proceeds to the stimulus 
presentation phase, omitting any stimuli with the “skip” property set to true. Thus, our message 
is only presented if mean latency is greater than 1000, and the “skip” property is not set to true.  
 
The purpose of the <text> element is to display a message in red encouraging participants to 
respond more quickly. However, we only wish to display this message if the participant’s 
average response time is greater than 1000 ms. This is accomplished through the /onprepare 
attribute, which executes the block of IQScript code defined between the square brackets when 
the text element is prepared for presentation. By default, the message is skipped. The code 
then checks the mean response time of all trials within the block called “practice”. If the mean 
response latency is greater than 1000 ms, the code sets the “skip” property of the <text> 
element to false. In this case, the message will be presented. 
 
IQScript can also be used to calculate custom metrics of task performance. Consider a Go/No 
Go task with two types of trials: 1) a “go” trial in which participants are presented a target 
stimulus and are instructed to press the spacebar, and 2) a “nogo” trial in which participants see 
a distractor stimulus and are instructed not to respond. Using the terminology of signal detection 
theory, if participants correctly respond to a “go” target, this is scored as a “hit”. If they do not 
respond on a “go” trial, the trial is classified as a “miss”. For “no go” trials, if they correctly do not 
respond, the trial is considered a “correct rejection”. If they mistakenly respond on a “no go” trial, 
the trial is scored as a “false alarm”.  
 
The example below shows two trial definitions, one for “go” and the other for “no go”. The trials 
include custom logic to tally the overall counts of hits, misses, correct rejections, and false 
alarms. These values could be used for numerous purposes, such as to calculate “d prime”, a 
signal detection measure of sensitivity.  
 
<trial gotrial> 
/ stimulusframes = [1=target] 
/ validresponse = (57, noresponse) 
/ correctresponse = (57) 
/ trialduration = 1000 
/ ontrialend = [ 
 if(trial.gotrial.response == 57) 
 { 

 values.hitcount += 1; 
} 
else if(trial.gotrial.response == 0) 
{ 
 values.misscount += 1; 
} 

] 



Inquisit Programmer’s Manual 
 

Page 48 
 

</trial> 
 
<trial nogotrial> 
/ stimulusframes = [1=distractor] 
/ validresponse = (57, noresponse) 
/ correctresponse = (noresponse) 
/ trialduration = 1000 
/ ontrialend = [ 
 if(trial.gotrial.response == 57) 
 { 

 values.falsealarmcount += 1; 
} 
else if(trial.gotrial.response == 0) 
{ 
 Values.correctrejectioncount += 1; 
} 

] 
</trial> 
 
This example introduces some new concepts that require explanation. First, note that the 
/validresponse attributes contain two responses, “57” and “noresponse”. The number 57 is the 
scan code of the space bar on a computer keyboard. (Hint - to get the scan code for a given key 
on your keyboard, select the “Keyboard Scancodes...” command on the Inquisit Lab Tools 
menu, and press the key of interest.) The “noresponse” entry is a special keyword indicating 
that not responding on this trial is valid. The /correctresponse attribute defines the correct 
response for the trial, which is the space bar for go trials and no response for no-go trials.  
 
Given that noresponse is valid for both trials, the trial duration must be set to a fixed duration so 
that a lack of response can be registered. Without limiting the duration of the trial, the trial would 
wait indefinitely for a response before advancing to the next trial. Using the /trialduration 
attribute, we thus set the duration to 1000 ms (1 second). The /trialduration attribute causes the 
trial to end after 1 second if no response is given. On the other hand, if a response is given 
before 1 second passes, the trial waits out the remainder of the 1 second before advancing. 
Thus, the /trialduration ensures the trial is exactly 1 second long regardless of whether a 
response is given or not.  
 
Finally, both trials make use of the /ontrialend attribute to calculate the custom metrics. The 
attribute takes a block of IQScript code (contained with square brackets as always). This code is 
executed after the trial is complete, but before data for the trial is recorded. Thus, it’s an 
excellent place to run performance metric calculations.  
 
For the go trial, the code checks whether the response was a spacebar press (57) or no 
response. If the space bar was pressed, it increments a property called “values.hitcount” by one. 
If no response was made, it increments a property called “values.misscount” by one. In contrast, 



Inquisit Programmer’s Manual 
 

Page 49 
 

the no-go trial increments “values.correctrejection” if no response was given, and 
“values.falsealarmcount” if a response was incorrectly given.  
 
These are just two examples of how IQML can be combined with IQScript to implement more 
sophisticated algorithms. This should give you a general idea of how IQScript can be used to 
enhance Inquisit’s power and flexibility. With this larger picture in mind, we’ll next drill down into 
the syntax of the IQScript language. 

IQScript Syntax 

Value Types 
String, numeric, constants, booleans (true and false) 

Getting and Setting Object Properties 
Each object in the IQML object model has a set of properties representing the current state of 
the object. For example, visual stimuli such as <text> and <picture> have “vposition” and 
“hposition” properties representing the horizontal and vertical screen coordinates at which the 
stimulus is presented. The <trial> element has a “response” property representing the last 
response given on that trial, and a “latency” property representing the response time of the last 
response on that trial.  
 
Some properties are read/write, meaning that their values can be programmatically retrieved 
and modified (e.g., the “hposition” and “vposition” of stimulus objects). Others are read-only, 
meaning that values can be retrieved via IQScript, but they can not be programmatically 
modified (e.g., “response” and “latency” properties of trials).  
 
The syntax for referencing properties uses the following format for properties of elements that 
are named (e.g., <text>, <trial>): 
 
type.name.property 
 
Type is the type of object, such as “trial”, “text”, or “picture”. Name is the name given to the 
element. Property is the name of the property being referenced. For example, consider the 
following shape element:  
 
<shape highlight> 
/ shape = rectangle 
/ color = yellow 
/ size = (10%, 10%) 
/ position = (33%, 33%) 
</shape> 
 



Inquisit Programmer’s Manual 
 

Page 50 
 

The shape element offers a number of different properties which can be referenced using the 
following format: 
 
shape.highlight.color 
shape.highlight.height 
shape.highlight.width 
shape.highlight.height 
shape.highlight.monitor 
 
These examples are by no means all of the properties supported by shape. For a complete list, 
see reference topic for the shape element.  
 
The IQML object model also includes singleton elements that do not have a name. For example, 
a script can only have one <defaults> and <data> element, so no name is required for these 
objects. To reference properties of unnamed elements, the format is similar to named elements 
except without the name component:  
 
type.property 
 
As with named elements, type is the type of the object (e.g., “defaults”, “data”), and property is 
the name of the property being referenced.  
 
To illustrate properties on unnamed objects, we’ll introduce the “display” element that is implicit 
to the IQML object model. The display object represents the physical display of the device that 
is running the test. The element can not be declared in the script, and it has no attributes. Its 
purpose is to expose the properties of the display so that these can be incorporated into task 
logic through IQScript. Below are examples of how to reference some of the properties of the 
display object: 
 
display.height 
display.width 
display.refreshrate 
display.colordepth 

Calling Object Functions 
In addition to properties, some objects also have member functions that can be called from 
IQScript code. For example, the <display> object has a “getpixelsx” that returns the horizontal 
pixel value corresponding to the percentage value that is passed in. Stimulus elements such as 
<text>, <picture>, <sound>, etc. have an “appenditem” that adds another stimulus item to the 
set.  
 
The syntax for calling functions is similar to that of properties. Here are a few examples: 
 
text.example.hposition = display.getpixelsx(50); 



Inquisit Programmer’s Manual 
 

Page 51 
 

picture.selecteditems.appenditem(“item1.jpg”); 
 
Note that some functions (such as “getpixelsx”) return a value, whereas others do not. 
Functions may also take one or more parameters, as the above examples illustrated, with 
parameters passed in between parentheses.   

Global Functions 
IQScript has dozens of built-in global functions for doing string operations, mathematical 
computations, statistical calculations, and more. Because the functions are global, they can be 
called directly without reference to a parent object. The following examples show the syntax for 
global functions: 
 
abs(trial.foo.response); 
 
The “abs” function returns the absolute value of the argument.  
 
trim(openended.name.response); 
 
The “trim” function trims whitespace from a string argument. 
 
For a complete list of global functions in Inquisit, see the Global Functions help topic. 

Operators 
Inquisit supports a number of arithmetic, logical, and comparison operators that are standard 
among programming languages.  

Assignment Operator 

= Sets the value of the left operand to the 
value of the right 

shape.dot.vposition = 50%; 

Arithmetic Operators 

+ Adds two operands trial.condition1.correctcount + 
trial.condition2.correctcount 

- Subtracts the right operand from the left 100 - trial.mytrial.percentcorrect 

* Multiples two operands trial.test.correctcount * 5 

/ Divides the left operand by the right trial.mytrial.percentcorrect / 100 

+= Sets the left operand to the sum of itself 
and the right operand 

values.trialcount += 1; 

https://www.millisecond.com/support/docs/v5/html/language/elements/global.htm


Inquisit Programmer’s Manual 
 

Page 52 
 

-= Sets the left operand to the difference of 
itself minus the right operand 

values.points -= 10; 

*= Sets the left operand to the product of itself 
multiplied by the right operand 

shape.bar.width *= 5; 

/= Sets the left operand to the quotient of 
itself divided by the right operand 

shape.bar.width /= 2; 

 

Comparison Operators 

== Returns true if two operands are equal, 
and false otherwise 

trial.iat.trialcount == 100 

!= Returns true if two operands are not equal, 
and false otherwise 

trial.iat.trialcount != 1 

< Returns true if the left operand is less than 
the right, and false otherwise 

trial.test.latency < 500 

<= Returns true if the left operand is less than 
or equal to the right, and false otherwise 

trial.test.latency <= 500 

> Returns true if the left operand is greater 
than the right, and false otherwise 

block.compat.percentcorrect > 50 

>= Returns true if the left operand is greater 
than or equal to the right, and false 
otherwise 

trial.test.latency >= 500 

Logical Operators 
 

&& Logical AND: returns true if both the left AND 
right operators are true, and false otherwise 

block.test1.percentcorrect == 100 && 
block.test2.percentcorrect == 100 

|| Logical OR: returns true if either the left OR 
right operator is true, and false otherwise 

trial.test.latency < 100 || 
trial.test.latency > 1000 

! Logical NOT: Returns true if the operand is 
false, and false if the operand is true. 

!trial.test.correct 

 

Values element 
The IQML object model includes a special <values> element, the purpose of which is to store 
values that can be set or retrieved with IQScript. The <values> object has no predefined 



Inquisit Programmer’s Manual 
 

Page 53 
 

attributes. Instead, arbitrary attributes can be defined to serve as variables that can be used in 
the rest of the script. Consider the following example: 
 
<values> 
/ trialcount = 0 
/ condition = "" 
/ totalearnings = 0.0 
</values> 
 
In this example, we’ve defined three values. The “trialcount” value is initialized to 0, the 
“condition” value is initialized to an empty string, and the “totalearnings” value is initialized to 
decimal value 0.0. Since values are initialized before the rest of the script is parsed, they can 
only be set to literal constants such as integers, decimals, and strings. They can not be 
initialized to the values of other properties.   
 
Having defined these values, they can now be used in IQScript as variables for storing metrics 
and state information as in the example below.   
 
<trial collect> 
/ ontrialbegin = [ 
 if(values.condition == “high”) 

{ 
  values.totalearnings += 100; 

} 
else if (values.condition == “low”) 

 { 
values.totalearnings += 10; 

} 
] 
... 
</trial> 

Parameters element 
The <parameters> element is similar to <values> in that its purpose is to declare variables that 
can be used throughout the rest of the script. The difference is that variables defined in the 
<parameter> element are read-only. They can not be changed from their initialized value.  
Parameters are a good place to define global settings controlling the test procedure, where they 
can be easily changed. For example, a test procedure could be programmed with the option to 
show performance feedback depending on whether a parameter is set to true or false. 
 
<parameters> 
/ showfeedback = true 
/ testtrialcount = 50 



Inquisit Programmer’s Manual 
 

Page 54 
 

/ practicetrialcount = 10 
</parameters> 
 
As with the <values>, each parameter must be initialized to a simple value such as a number, 
string, or built-in constant. In the example above, 3 parameters are defined: “showfeedback” 
determines whether performance feedback is presented to the participant, “testtrialcount” 
determines the total number of test trials, and “practicetrialcount” determines the total number of 
practice trials. By defining these as parameters (and implementing the rest of the script to use 
them), we can change certain aspects of the procedure simply by changing the parameter 
value. 

Keywords and Statements 

Variable declarations: var 
Variables are a fundamental tool of programming languages. A variable can be thought of as a 
named placeholder or box where values can be stored, updated, and retrieved. Variables can 
be used to store the results of complex calculations along with any intermediate values used in 
those calculations. They can store almost any kind of data, such as scores measuring a 
participant’s performance, special instructions to present to a participant, or values indicating 
the participant’s progress through a task.  
 
A variable must first be declared and optionally initialized before it can be used. Inquisit provides 
two ways to declare variables. The first method is by adding them to the <values> or the  
<parameters> element using IQML as described previously. Such variables are global to the 
script and thus can be used anywhere else in the script. The key difference between <values> 
and <parameters> is that <values> are read/write and can thus be assigned different values, 
whereas <parameters> are read-only and will always have whatever value they were initialized 
to.  
 
The second way to declare a variable is with the “var” statement in IQScript. The “var” statement 
allows you to define temporary variables that are local to the block of IQScript in which they are 
declared. These variables are read/write and can thus be assigned different values.  
 
Variables declared with either method can be assigned values of any type, including numbers, 
string, and objects. So which of the two methods should one use? Generally speaking, values 
that are referenced multiple times during execution of the script, or across multiple code blocks, 
as well as values that should be recorded to the data file should be declared in the <values> 
element. Examples include performance metrics that are updated by different trials or blocks, 
and trial or block counters that track the state of the currently running task.  
 
Values that are used temporarily within a particular code block, in contrast, should be declared 
with “var”. Examples include counters that track how many iterations of a loop have been run, 
and temporary intermediate variables used in complex calculations. 



Inquisit Programmer’s Manual 
 

Page 55 
 

 
The following examples illustrate the syntax for “var” declarations: 
 
<trial example> 
... 
/ ontrialend =  
[ 

var i = 0; 
while (i < 10) { 
 list.conditions.appenditem(i); 
} 

] 
... 
</trial> 
 
In the first example, a variable named “sum_of_squares” is declared but not initialized. The 
value of an uninitialized variable is undefined, so the variable should not be used until it has 
been explicitly assigned a value. In the second example, a variable named “i” is declared and 
initialized to 0. As you can see, initialization variables in the declaration statement are optional.  
 
Once a variable is declared, it can be referenced in code as in the lines following the 
declarations above.  

Conditional Statements: if, else if, and else. 
IQScript includes the statements “if”, “else if”, and “else” for implementing conditional logic. The 
“if” statement can be used standalone as in the following example: 
 
if (block.test1.percentcorrect == 100)  

values.perfectscore = true; 
 

The logical expression to be evaluated (i.e., the condition) must be included in parentheses. If 
the expression is true, the assignment expression immediately following the condition is 
executed. Note that standalone expressions such as the assignment must be terminated by 
semi-colons. To execute a block of statements if the condition is true, we can group those 
statements in curly braces as follows: 
 
if (block.test1.percentcorrect == 100)  
{ 

values.perfectscore = true; 
values.stoptest = true; 

} 
 



Inquisit Programmer’s Manual 
 

Page 56 
 

Conditions can include more complex expressions such as logical AND, arithmetic operators, 
and function calls, as in the following example: 
 
if (block.test1.percentcorrect == 100 && trim(trial.test1.response) == “red”)  
{ 

values.perfectscore = true; 
values.stoptest = true; 

} 
 
The “if” statement can be combined with the “else” statement to specify expressions to run if the 
condition is not true. If the condition is true, the “if” block is executed, otherwise the “else” block 
is executed:  
 
if (block.test1.percentcorrect == 100)  
{ 

values.perfectscore = true; 
values.maxblocks -= 2; 

} 
else 
{ 

values.perfectscore = false; 
values.maxblocks += 4; 

} 
 
The “if” statement can also be combined with the “else if” statement to execute blocks based on 
multiple conditions as in the following example: 
 
if(trial.mytrial.response == 1) 
{ 
 shape.option1.skip = false; 
} 
else if (trial.mytrial.response == 2) 
{ 
 shape.option2.skip = false; 
} 
else if (trial.mytrial.response == 3) 
{ 
 shape.option3.skip = false; 
} 
else 
{ 
 shape.option4.skip = false; 
} 
 



Inquisit Programmer’s Manual 
 

Page 57 
 

The statement starts by comparing a trial response to the value 1. If this is true, the enclosed 
block is executed. If it’s not true, the next condition comparing the response to 2 is evaluated. If 
it is true, the corresponding code block is executed. Otherwise the next “else if” statement is 
evaluated. If none of the conditions are true, the code in the “else” statement is executed.  
 
Conditions aren’t restricted to operations that return true or false. Numeric expressions can also 
be used, with 0 evaluating to false and all other numbers evaluating to true. 
 
As a reminder, all standalone expressions must be terminated with a semicolon. Semicolons 
should not be used for expressions passed as arguments to functions or used in conditional 
statements like “if” and “else if”. 

Conditional Looping  
Looping is a fundamental programming concept in which a block of code is repeatedly executed 
as long as a particular condition is met. When that condition is no longer true, the loop exits and 
the next line of code is run.  
 
IQScript supports looping using the “while” statement. The “while” statement specifies a logical 
statement that is evaluated as true or false and a block of code to be executed, repeatedly, until 
the logical statement is false. The logical statement must appear in parentheses. The code 
block must be contained with curly braces if it has more than one line of code. Consider the 
following example: 
 
var i = 0; 
var x; 
while(i < 100) 
{ 
 x = randgaussian(100, 10); 
 list.normaldistribution.append(x); 
 i += 1; 
} 
 
Two variables are declared, i serving as a counter and x to store randomly selected values. The 
while loop executes repeatedly as long as the value of the i counter is less than 100. Inside the 
loop, a random value is selected from a gaussian distribution with a mean of 100 and standard 
deviation of 10 and stored into variable x. That variable is then added to a list. Finally, the 
counter variable i is incremented by 1. This loop executes exactly 100 times before the value of i 
is 100, and the while condition is no longer true. 

Return Statement 
IQScript also supports a return statement that ends a block of statements and optionally returns 
a value. Consider the following example, which illustrates branching logic selecting which trial 
should run next depending on which conditions are met: 



Inquisit Programmer’s Manual 
 

Page 58 
 

<trial choice> 
... 
/ branch = [ 
if(trial.choice.response == “a”) 
 return trial.a; 
else if(trial.choice.response == ”b”) 
 return trial.b; 
else if(trial.choice.response == ”c”) 
 return trial.c; 
] 
... 
</trial> 
 
The example evaluates the response given on trial “choice”, and it returns a different trial (“a”, 
“b”, or “c”) depending on the value of the response.  

Expressions element 
The expressions element allows you to define global calculations that can be reused and 
referenced in IQScript. Expressions allow you to encapsulate calculations so you can reference 
them by an expression name rather than coding up redundant copies of the formula everywhere 
it is used.  
 
Consider the following example: 
 
<expressions> 
/ mean_responsetime = values.sum_responsetime / values.n_responsetime 
</expressions> 
 
The example defines an expression called “mean_responsetime”, which tracks the average 
response time and is computed by dividing the sum of response times by the count. With the 
expression so defined, we now have a variable “expressions.mean_responsetime” that we can 
use throughout the rest of the script. Whenever the expression is referenced, the corresponding 
equation is evaluated and the result returned.  
 
The expression can be reported in data columns:  
 
<data> 
/ columns = (date, time, subject, group, session, expressions.mean_responsetime) 
</data>  
 
Or it can be used in IQScript, such as in the following example, in which a block branches to a 
feedback block if the average response time exceeds 600 milliseconds: 
 



Inquisit Programmer’s Manual 
 

Page 59 
 

<block simple_reactiontime> 
/ trials = [1-20 = noreplace(leftkey, rightkey)] 
/ branch = [ 
 if(expressions.mean_responsetime > 600) 
  return block.showfeedback; 
] 
</block> 
 
Expressions can contain more complicated equations, such as in the following example, taken 
from the IAT test, which computes the standard deviation of response times.  
 
<expressions> 
/ sda = sqrt((((values.n1a - 1) * (expressions.sd1a * expressions.sd1a) + (values.n2a - 1) * 
(expressions.sd2a * expressions.sd2a)) + ((values.n1a + values.n2a) * ((expressions.m1a - 
expressions.m2a) * (expressions.m1a - expressions.m2a)) / 4) ) / (values.n1a + values.n2a - 1) 
) 
</expressions> 
 
The syntax for defining expressions is relatively straightforward. The expression name is 
defined right after the “/” character and is followed by an equal sign “=”, after which the equation 
to be evaluated is defined.  

Built-in Elements 
IQScript includes a number of elements that are built into the object model rather than declared 
with IQML. These elements have properties and functions that can be called in IQScript or 
saved to data files, just like with IQML elements.  
 

Script Element 
The script element has properties that return values related to the current run of the script. The 
most commonly used properties and functions of the script element are listed below (see 
Inquisit’s documentation for a complete list): 

script.completed 
This property returns a 1 at the end of the script if the participant completed the entire script, or 
0 if they aborted the script before finishing. This can be stored in the summary data file to flag 
incomplete data sets. 
 

script.elapsedtime 
This property returns the number of milliseconds that have elapsed since the script started 
running. This property is useful for implementing custom timing algorithms.  



Inquisit Programmer’s Manual 
 

Page 60 
 

script.groupid  
This is the group number of the current session, which can be used for between-subject 
manipulations and counterbalancing.  

script.subjectid 
This property returns the participant’s identifier for this session. 

script.sessionid  
This property runs the count of the current session, tracking which iteration of the test the given 
participant is on in a repeated-measures design. 

script.starttime  
This property returns the starting time of the session. 

script.startdate 
This property returns the start date of the session. 

script.abort() 
This function allows a script to be programmatically aborted. This could be useful, for example, 
in creating a custom consent mechanism that includes an option for participants to quit.  

Display Element 
The display element offers data about the graphics system on the current device. This data can 
be recorded to data files or used by a script to check whether the display meets minimum 
criteria for a given test.  

display.height 
This property returns the height of the display in pixels.  

display.width  
This property returns the width of the display in pixels. 

display.refreshinterval 
This property returns how long in milliseconds it takes the display to repaint the screen during 
each refresh cycle. On a 60hz monitor, for example, the value would be 16.667.  

Computer Element 

computer.haskeyboard 
This property returns true if the device has a physical keyboard attached, and false otherwise. 



Inquisit Programmer’s Manual 
 

Page 61 
 

computer.languagecode 
This property returns the two-character, ISO 639-1 language code of the current device, such as 
“en” for English, “de” for German, and “jp” for Japanese. This is the default language for the 
device and can thus indicate the native language of the participant in online studies.  

computer.os 
This returns the name and version of the operating system the current device is running. 

computer.platform 
This returns the platform of the current device, which can be “win”, “mac”, “ios”, or “android”. 
 
computer.touch 
This returns true if the current device has a touchscreen, and false otherwise. 

Inquisit Element 
The inquisit element has information about the version of Inquisit that is currently running the 
script. For long term studies that span multiple Inquisit updates, this can be used to record 
which version of Inquisit was used for a given session. 

inquisit.releasedate 
This property returns the date the current version of Inquisit was released.  

inquisit.version 
This property returns the full version number of Inquisit that is running. 

Mouse Element 
The mouse element allows programmatic access to the mouse’s location on the screen.  

mouse.x 
This property returns the horizontal pixel of the mouse cursor’s current location. The property 
can also be set to programmatically change the position of the mouse. For touch screens, it 
returns the location of the last touch. 

mouse.y 
This property returns the vertical pixel of the mouse cursor’s current location. The property can 
also be set to programmatically change the position of the mouse. For touch screens, it returns 
the location of the last touch. 

  



Inquisit Programmer’s Manual 
 

Page 62 
 

Handling IQML Events with IQScript 
Many elements in IQML have events that can be linked with blocks of IQScript such that 
whenever the event occurs, the corresponding script is executed. These events allow you to run 
IQScript at specific times in the flow of the procedure. This allows creation of flexible, dynamic 
procedures in which elements can be configured on the fly based on the state of the test or the 
participant’s performance. 

Stimulus Onprepare Event 
All stimulus elements in IQML have a single event called “onprepare” that is executed 
immediately before the stimulus is prepared for presentation. While the attributes of a given 
stimulus can be configured statically in IQML, the onprepare event is useful for dynamically 
setting stimulus properties depending on other factors.  
 
The following example covers a <text> element that shows a warning to participants to respond 
more accurately if their percent correct falls below threshold.  
 
<text warning> 
/ items = ("Please respond more accurately") 
/ onprepare = [ 
 if(block.test.percentcorrect < 70) 
 { 
  text.warning.textcolor = red; 
 } 
 else if(block.test.percentcorrect < 85) 
 { 
  text.warning.textcolor = yellow; 
 } 
 else 
 { 
  text.warning.textcolor = black; 
 } 
] 
/ position = (50%, 25%) 
/ erase = false 
</text> 
 
When Inquisit prepares the stimulus for presentation, it calls the onprepare event and executes 
the script within. In this example, the script checks the percent of correct responses within a 
given block. If the accuracy is less than 70%, the warning message is changed to red. If 
accuracy is less than 85%, the warning message is yellow. Otherwise, the warning message is 
presented in black.  



Inquisit Programmer’s Manual 
 

Page 63 
 

Trial Ontrialbegin and Ontrialend Events 
All trial elements in IQML (<trial>, <openended>, <likert>, and <slidertrial>) execute two events,  
ontrialbegin and ontrialend. The ontrialbegin event is fired immediately before the trial is 
prepared. This is useful for initialization logic for the trial, among other things. The ontrialend 
event is fired after the trial is complete and just before data is saved. The ontrialend event is 
great for scripts that update variables based on the participant’s response.  
 
The <trial> in the following example shows a trial with blocks of IQScript running in the 
ontrialbegin and ontrialend events: 
 
<trial iowagamblingtask> 
/ ontrialbegin = [ 
 picture.deck1.item.1 = "deck.jpg"; 
 picture.deck2.item.1 = "deck.jpg"; 
 picture.deck3.item.1 = "deck.jpg"; 
 picture.deck4.item.1 = "deck.jpg"; 
] 
/ stimulusframes = [1=deck1, deck2, deck3, deck4] 
/ validresponse = (deck1, deck2, deck3, deck4) 
/ ontrialend = [ 

if (trial.iowagamblingtask.response == "deck1") { 
  picture.deck1.item.1 = "deckon.jpg"; 
 } else if (trial.iowagamblingtask.response == "deck2") { 
  picture.deck2.item.1 = "deckon.jpg"; 
 } else if (trial.iowagamblingtask.response == "deck3") { 
  picture.deck3.item.1 = "deckon.jpg"; 
 } else if (trial.iowagamblingtask.response == "deck4") { 
  picture.deck4.item.1 = "deckon.jpg"; 
 }; 
] 
</trial> 
 
The trial presents four decks of cards on the screen using four different picture elements. In 
ontrialbegin, the first item in each picture is set to the same image file, “deck.jpg”, which depicts 
the back of a deck of cards. Thus, the trial presents four decks on the screen for the participant 
to choose from. In the ontrialend event, the code evaluates which deck the participant selected 
and then changes the image file used by the corresponding picture element to “deckon.jpg”; an 
image that shows the back of the card similar to “deck.jpg” but with an outline around it to 
indicate it was selected.  



Inquisit Programmer’s Manual 
 

Page 64 
 

Block Onblockbegin and Onblockend Events 
The <block> element supports two events, onblockbegin and onblockend. The onblockbegin 
event fires just before the block is prepared, providing an opportunity to initialize variables at the 
start of a block. The onblockend event fires after the block is complete, providing a good place 
for cleanup code that should run at the end of the block.The following example block shows 
IQScript running in both the onblockbegin and onblockend events.  
 
<block ANT_practice> 
/ onblockbegin = [ 

values.practice = true; 
] 
/ trials = [1-12 = noreplace(nocue, centercue, spatialcue)] 
/ onblockend = [ 
 list.accuracy.reset(); 

list.latencies.reset(); 
] 
</block> 
 
The block runs practice trials of the Short ANT procedure. In onblockbegin, a single value 
named “practice”, which serves as a global flag indicating the script is in practice mode, is 
initialized to true. In onblockend, two lists storing the accuracy and latency of each response in 
the block are reset - i.e., they are emptied and all selection state is cleared. 

Expt Onexptbegin and Onexptend Events 
The <expt> element supports two events, onexptbegin and onexptend. The onexptbegin event 
fires just before the experiment is prepared, providing an opportunity to initialize variables at the 
start of a script. The onexptend event fires after the experiment is complete but before summary 
data is recorded, providing a good place for cleanup code as well as calculating final 
performance metrics.  
 
The following example from the Corsi Block Test shows IQScript running in both the 
onblockbegin and onblockend events.  
 
<expt corsitask> 
/ onexptbegin = [ 
 text.1.erasecolor=parameters.blockcolor;  
 text.2.erasecolor=parameters.blockcolor;  
 text.3.erasecolor=parameters.blockcolor;  
 text.4.erasecolor=parameters.blockcolor;  
 text.5.erasecolor=parameters.blockcolor;  
 text.6.erasecolor=parameters.blockcolor;  
 text.7.erasecolor=parameters.blockcolor;  



Inquisit Programmer’s Manual 
 

Page 65 
 

 text.8.erasecolor=parameters.blockcolor;  
 text.9.erasecolor=parameters.blockcolor; 
 
 text.1.textbgcolor=parameters.blockcolor;  
 text.2.textbgcolor=parameters.blockcolor;  
 text.3.textbgcolor=parameters.blockcolor;  
 text.4.textbgcolor=parameters.blockcolor;  
 text.5.textbgcolor=parameters.blockcolor;  
 text.6.textbgcolor=parameters.blockcolor;  
 text.7.textbgcolor=parameters.blockcolor;  
 text.8.textbgcolor=parameters.blockcolor;  
 text.9.textbgcolor=parameters.blockcolor; 
 
 shape.board.color=parameters.boardcolor; 
] 
/ blocks = [1=instructionsblock; 2-9=corsiblock; 10=scoreblock;] 
/ onexptend = [ 
 if (values.ageGroup == 1){ 
  expressions.calculate_totalscore_byAgegroup1; 
 } else if (values.ageGroup == 2){ 
  expressions.calculate_totalscore_byAgegroup2; 
 } else if (values.ageGroup == 3){ 
  expressions.calculate_totalscore_byAgegroup3; 
 }; 
] 
</expt> 
 
In the onexptbegin event, which fires once at the beginning of the script, the background color 
and the color used to erase the stimuli representing the blocks are all set to a parameter 
defining the block color. By storing the color in a single parameter, it can be easily changed to 
another color. In the onexptend event, which fires when the experiment is complete but before 
data is written to the summary data file, one of three different expressions is used to calculate 
normalized scores depending on the age of the participant.  

Trial Isvalidresponse and Iscorrectresponse Events 
All trial elements (<trial>, <openended>, <likert>, and <slidertrial>) support two events for 
evaluating responses given by participants, isvalidresponse and iscorrectresponse.  
 
The isvalidresponse event fires immediately after a participant responds. This event works in 
combination with the /validresponse attribute (if it’s defined) to determine whether a response is 
valid. If the IQScript in the isvalidresponse event returns true, and either /validresponse is not 
defined or the response is listed in the /validresponse attribute, the response is considered 



Inquisit Programmer’s Manual 
 

Page 66 
 

valid. If isvalidresponse returns false, or the /validresponse attribute is defined but does not 
contain the response, the response is considered invalid and is ignored.  
 
In most cases, response validity can be handled by the /validresponse attribute alone. The 
isvalidresponse event can be useful in cases requiring more complex validation logic.  
 
In the following example from the picture story exercise, participants are instructed to type a 
story to go with a picture. There are no validation rules for the text they enter - they can type 
whatever they like. However, in order to ensure they don’t simply race through the task without 
making an effort, the task requires them to remain on each question for a minimum amount of 
time before they can submit their response and proceed to the next trial. This rule is enforced by 
the isvalidresponse event, which checks the latency of the submitted response and returns true 
if it is greater than or equal to the minimum time, captured by the “parameters.minstorytime” 
parameter, and false otherwise.  
 
<openended story> 
/ size = (80%, 60%) 
/ stimulustimes = [0=dir, question] 
/ isvalidresponse = [ 
 return ( openended.story.latency >= parameters.minstorytime); 
] 
/ timeout = parameters.maxstorytime 
</openended> 
 
The iscorrectresponse event fires immediately after the isvalidresponse event. This event works 
in combination with the /correctresponse attribute (if it’s defined) to determine whether a 
response is valid. If the IQScript in the iscorrectresponse event returns true, and either 
/correctresponse is not defined or the response is listed in the /correctresponse attribute, the 
response is considered correct. If iscorrectresponse returns false, or the /correctresponse 
attribute is defined but does not contain the response, the response is considered incorrect.  
 
In the example below, an openended trial displays a math problem and participants type the 
answer into a textbox. The string representing the math problem (e.g., “7 + 4”) is stored in 
values.mathProblem. When the participant submits their response, the iscorrectresponse event 
fires and the math problem is evaluated on the fly using Inquisit’s “evaluate” function. The result 
is compared to the participant’s response, returning true if they are the same and false if not.  
 
<openended math> 
/ stimulusframes = [1 = mathProblem] 
/ iscorrectresponse = [ 
 return (openended.math.response == evaluate(values.mathProblem)); 
] 
/ buttonlabel = "submit" 
/ mask = integer 



Inquisit Programmer’s Manual 
 

Page 67 
 

</openended> 

Conditional Branching with IQScript 
Inquisit supports conditional branching through the /branch attribute, which is supported on all 
<trial> and <block> elements as well as their derivatives. Much like events, the branch attribute 
takes IQScript expressions. The script within the attribute is evaluated at the very end of the trial 
or block. If the expression returns a trial or block, the procedure runs that trial or block next. 
Those trials or blocks may in turn branch to other trials and blocks. If the /branch expression 
returns nothing, control is returned to the parent element to determine what if anything is run 
next. A block can only branch to a block, including itself. A trial can only branch to a trial, 
including itself. A block can not branch to a trial, nor a trial to a block.  
 
The following example shows a block from a visual scanning task that includes conditional 
branching. The block runs 21 training trials for the task. Each time the block runs, a block 
counter values.counttrainingblocks is incremented by 1. In the branch attribute, this counter is 
compared against “parameters.nr_trainingblocks”, which indicates the total number of training 
blocks to run. If the counter is less than the parameter value, the branch expression returns 
block.training and the block is repeated. If the counter is greater or equal to the parameter, the 
branch returns block.reset, which clears all variables and starts the actual test trials. 
 
<block training> 
/ onblockbegin = [ 

values.counttrainingblocks += 1; 
] 
/ trials = [1-21 = fixation] 
/ branch = [ 
 if (values.counttrainingblocks < parameters.nr_trainingblocks){ 
  return block.training 
 } else { 
  return block.reset; 
 }; 
] 
</block> 
 
The following example taken from the Affective Go/No Go task demonstrates branching at the 
trial level. This is a practice “go” trial in which participants are expected to press the go 
response key before the trial times out. The /branch attribute evaluates the 
trial.go_practice.correct property, which is true if a correct response was made on the trial and 
false otherwise. If the participant did respond correctly, the branch returns a trial called 
“correctfeedback” that informs the participant they responded correctly. If the participant does 
not respond, the branch returns the “errorfeedback” trial, which presents feedback indicating an 
error was made,  



Inquisit Programmer’s Manual 
 

Page 68 
 

 
<trial go_practice> 
/ stimulustimes = [0 = practice] 
/ validresponse = (parameters.goKey) 
/ correctresponse = (parameters.goKey) 
/ timeout = parameters.responseDuration 
/ branch = [ 
 if (trial.go_practice.correct){ 

 return trial.correctfeedback; 
 } else { 
  return trial.errorfeedback; 
 }; 
] 
</trial> 

Text Insertion Macros 
Inquisit provides a simple mechanism for inserting variables into text stimuli, instruction pages, 
survey captions and response options, and almost any command in IQML that takes a string. 
This can be useful in a number of situations, such as giving participants feedback on their 
performance, or for using a participant’s response input as stimuli.  
 
The following example shows the syntax for inserting variable values into a string of text for an 
instruction page 
 
<page one> 
Put your left finger on the ‘<%parameters.leftkey%>’ response key for items that belong to 
the category <%expressions.leftTarget%>. Put your right finger on the 
‘<%parameters.rightkey%>’ response key for items that belong to the category 
<%expressions.rightTarget%>. 
</page> 
 
The variables to be inserted appear between the delimiters “<%” and “%>”. Any valid IQScript 
expression can be specified within the delimiters. When Inquisit displays the page, the entire 
section (including delimiters) is replaced by the result of the expression contained within the 
delimiters. After variables are substituted, the page might look like the following: 
 
Put your left finger on the ‘E’ response key for items that belong to the 
category Pleasant. Put your right finger on the ‘I’ response key for items 
that belong to the category Unpleasant. 
 
Variables can be inserted almost anywhere that text can be specified. Variables can be inserted 
into HTML files, for example, as presented by <html> and <htmlpage>.  They can be inserted 



Inquisit Programmer’s Manual 
 

Page 69 
 

into anchor text for <likert> scales. They can also be inserted into standard <text> elements, 
such as in the following example: 
 
<text scores> 
/ items = ("Results: 
Block Span = <%values.blockspan%>  
Total Score = <%values.totalscore%>") 
/ size = (50%, 50%) 
</text> 

  



Inquisit Programmer’s Manual 
 

Page 70 
 

Advanced Stimulus Presentation 

Selecting Items 
Stimulus elements in Inquisit can be defined to represent a single stimulus item, such as a 
<text> element containing a standard error message to be displayed whenever an erroneous 
response is made. Or they can be defined to represent a set of related items, such as a 
<picture> element containing 52 images of standard playing cards to be selected and presented 
in sequence over a series of trials. For stimulus elements containing multiple items, only one 
item at a time can be selected and presented on a given trial. The method by which items are 
selected is controlled by the /select attribute.  

Random Selection 
By default, stimulus elements in Inquisit randomly select items without replacement. Once all 
items have been selected, they are all returned to the selection pool. This can also be explicitly 
specified by setting /select = noreplace. The following two <text> elements are thus functionally 
identical: 
 
<text animals> 
/ items = (“dog”, “cat”, “bird”, “horse”) 
</text> 
 
<text animals> 
/ items = (“dog”, “cat”, “bird”, “horse”) 
/ select = noreplace 
</text> 
 
To select with replacement, the /select attribute should be set to “replace” as in the following 
example: 
 
<text animals> 
/ items = (“dog”, “cat”, “bird”, “horse”) 
/ select = replace 
</text> 

Sequential Selection 
To present the item list in the order they were specified, the /select attribute can be set to 
“sequence”. Once all the items have been presented, the stimulus starts over at the beginning 
of the item list: 
 
<text animals> 
/ items = (“dog”, “cat”, “bird”, “horse”) 



Inquisit Programmer’s Manual 
 

Page 71 
 

/ select = sequence 
</text> 

Synchronized Selection Between Stimuli 
In some scenarios, the items from one stimulus set might be related to the items of another. For 
example, a lexical priming task might include a set of prime words (“doctor”, “cat”, “money”) and 
a set of semantically related targets (“nurse”, “kitten”, “wallet”). In this case, selection of the 
primes and targets must be coordinated so that when a given prime is selected, its 
corresponding target is also presented.  
 
This can be accomplished by setting the /select attribute of one one <text> element to the name 
of the other: 
 
<text primes> 
/ items = (“doctor”, “car”, “strength”, “hammer”) 
/ select = noreplace 
</text> 
 
<text targets> 
/ items = (“nurse”, “automobile”, “power”, “nail”) 
/ select = primes 
</text> 
 
In this example, the primes words are selected randomly without replacement. The selected 
target depends on which prime is selected. Specifically, the target selected is the same index as 
the selected prime. For example, if the second item (“car”) is randomly selected as the prime, 
then the second item (“automobile”) is selected as the target.  
 
It is also possible to set up the inverse of the above example, where all target items are 
considered valid selections EXCEPT for the currently selected prime. Consider an evaluative 
priming task involving pleasant and unpleasant primes and targets, both of which are drawn 
from the same pool of words. On congruent trials, any target word can be paired with any prime 
word except for itself. We can capture this constraint by setting /select=noreplacenot, as in the 
following: 
 
<text pleasant_prime> 
/ items = (“love”, “peace”, “happy”, “wonderful”) 
/ select = noreplace 
</text> 
 
<text pleasant_target> 
/ items = (“love”, “peace”, “happy”, “wonderful”) 
/ select = noreplacenot(pleasant_prime) 



Inquisit Programmer’s Manual 
 

Page 72 
 

</text> 
 
In this example, primes are once again selected randomly without replacement. Targets are 
also selected randomly with the condition that the target word must be different from the prime. 
This is specified as /select=noreplacenot(pleasant_prime). This command ensures that the 
target item at the same index as the currently selected prime is not selected.  

Animation 
Numerous psychological testing paradigms, particularly in the areas of motion perception and 
time estimation, involve visual stimuli that move across the screen. For example, the Time Wall 
Estimation Task presents a disk that moves at a constant velocity from the top to the bottom of 
the screen and  disappears behind a wall half way down. Participants are required to estimate 
when the hidden disk reaches a certain position on the wall. Another example is the Pursuit 
Rotor Task, in which participants manually track a disk that moves in a circle on the screen.  
 
All visual stimuli in Inquisit (with the exception of <html>) can easily be animated along the 
dimensions of position, size, and rotation. Animated stimuli can be programmed to move along 
particular paths, including circles, lines, and custom sets of coordinates. Stimuli can also be 
programmed to change size and rotation. The speed of animations can of course be 
customized. Animations can also be configured to run once or to loop.  
 

Path Animations 
Path animations enable you to move stimuli along a path specified by a series of points on the 
screen. Consider, for example, the Time Wall Estimation Task. As illustrated below, this task 
presents a black disk that falls downward at a constant speed until it disappears behind a blue 
wall. Participants are required to estimate when the position of the falling black disk would 
exactly overlap the gray circle on the wall.  



Inquisit Programmer’s Manual 
 

Page 73 
 

 
 
In this task, the disk is defined using a simple <shape> element, and its movement is controlled 
by the animation attribute, as in the following code.  
 
<shape fallingdisk> 
/shape = circle 
/color = black 
/size = (parameters.circleradius*2*display.canvasheight/display.canvaswidth, 
parameters.circleradius*2) 
/animation = path(parameters.totalfallduration, 1, 50%, expressions.start_y, 50%, 
expressions.end_y) 
/ erase = false 
</shape> 
 
Note that the /shape is defined as a circle (taking into account the current canvasaspectratio), 
/color is set to black, and the /size defines the width and height according to the “circleradius” 
parameter.  
 
Movement of the disk is specified by the /animation command. The animation is defined as a 
“path” with the following parameters.  

1) Duration of the animation in milliseconds. This value determines the time it takes the 
animation to complete, or conversely, the speed at which the disk falls, with higher 
durations corresponding to slower speeds. The above example uses “totalfallduration” 
parameter to specify the duration.  



Inquisit Programmer’s Manual 
 

Page 74 
 

2) Loop count of the animation. This determines how many times the animation will loop, 
with -1 indicating continuous looping. The above example sets loop count to 1, which 
runs the animation once. 

3) Starting horizontal coordinate. This specifies the horizontal coordinate at which the 
animation starts. This is set to 50% above, which corresponds to the center of the 
screen. 

4) Starting vertical coordinate. This specifies the vertical coordinate at which the animation 
starts. This is set to an expression called “start_y” above, which returns the top of the 
screen less the circle radius, so that the disk starts exactly adjacent to the top of the 
screen. 

5) Ending horizontal coordinate. This specifies the horizontal coordinate of the destination 
point of the animation. This is set to 50% above, which is the same as the starting point, 
causing the disk to fall straight down.  

6) Ending vertical coordinate. This specifies the vertical coordinate of the destination point 
of the animation. This is set to an expression called “end_y” above, which returns the 
bottom of the screen less the circle radius, so that the disk ends up exactly adjacent to 
the bottom of the screen. 

 
Thus, the disk is animated to fall straight down from the top to the bottom of the screen along a 
path in the middle of the screen. The speed of the animation is set such that it moves from start 
to finish in exactly the duration specified by the first parameter. 
 
The above example shows how to move a stimulus in a straight line between two points. With 
path animations, you can specify more complicated routes by including an arbitrary number of 
points in the path, in which case the stimulus will move from point to point until it reaches the 
final point.  

Points animations 
Points animations are similar to path animations with the following exception. Whereas path 
animations cause a stimulus to move continuously along the lines between a set of points, the 
points animation simply relocates the stimulus, causing it to jump from point to point. The 
parameters are identical to path animations, as shown in the example below: 
 
<shape jumpingdisk> 
/shape = circle 
/color = black 
/size = (parameters.circleradius*2*display.canvasheight/display.canvaswidth, 
parameters.circleradius*2) 
/animation = points(parameters.totalfallduration, 1, 50%, expressions.start_y, 50%, 
expressions.end_y) 
/ erase = false 
</shape> 



Inquisit Programmer’s Manual 
 

Page 75 
 

Circle animations 
Circle animations provide a simple way to move a stimulus in a circle. Consider the Pursuit 
Rotor task, depicted in the image below, in which participants must try to position their mouse 
points over a disk as it moves in a circle. When the cursor is above the circle, the feedback 
message “ON” is presented as feedback to the user. If the cursor moves off the circle, the 
message “OFF” is presented. 

 
The tracking disk is defined in the following code.   
 
<shape animatedCircle> 
/ shape = circle 
/ color = yellow 
/ size = (200%*parameters.discRadius, 200%*parameters.discRadius) 



Inquisit Programmer’s Manual 
 

Page 76 
 

/ animation = circle(parameters.trialDuration, 1, 0, 50%, 50%, 
expressions.radius_track_inpercent) 
/ erase = false 
</shape> 
 
The /shape is set to circle, /color is set to yellow, and the /size is set using the “discRadius” 
parameter.  
Movement of the disk is specified by the /animation command. The animation is defined as a 
“circle” with the following parameters.  
 

1) Duration of the animation in milliseconds. This value determines the time it takes the 
animation to complete, or alternatively, the speed at which the disk revolves, with higher 
durations corresponding to slower speeds. The above example uses the “trialDuration” 
parameter to specify the duration.  

2) Loop count of the animation. This determines how many times the animation will loop, 
with -1 indicating continuous looping. The above example sets loop count to 1, which 
runs the animation once. 

3) Starting point. With circle animations, the starting point is the percentage of the circular 
arc, ranging from 0 (top of the circle) to 100 (back to the top of the circle). This is set to 
50% above, which corresponds to the bottom of the circle. Negative values can be 
specified for counter-clockwise animations. Values greater than 100 can be used to 
animate beyond a single rotation.  

4) Horizontal center. This specifies the horizontal coordinate of the center point of the 
circle. This is set to 50% above, which is the center of the screen. 

5) Vertical center. This specifies the vertical coordinate of the center point of the circle. This 
is set to 50% above, which is the center of the screen.  

6) Radius. This specifies the radius of the circle, which is set to an expression called 
“radius_track” above.  

 
Thus, the disk is animated to revolve around the specified circle. Its speed is set such that it 
completes 1 revolution in exactly the duration specified by the first parameter. 

Size Animations 
In addition to controlling movement of stimuli, animation can also be used to change stimulus 
size. The syntax for animation size is similar to that of position, except that scaling values are 
provided instead of screen coordinates. Consider the following example, which displays a 
picture that steadily increases in size.  
 
<picture feedback> 
/ item = (“feedback.jpg”) 
/ size = (10%, 10%) 
/ animation = size(1000, -1, 10%, 10%, 2) 
</picture> 



Inquisit Programmer’s Manual 
 

Page 77 
 

 
Growth of the picture is specified by the /animation command. The animation is defined as a 
“size” with the following parameters.  
 

1) Duration of the animation in milliseconds. This value will determine the speed at which 
the picture grows, with higher durations corresponding to slower speeds. The above 
example sets the duration to 1000 milliseconds.  

2) Loop count of the animation. This determines how many times the animation will loop, 
with -1 indicating continuous looping. The above example sets loop count to -1, which 
repeats the animation continuously. 

3) Horizontal starting size. This specifies the horizontal starting size of the picture, which is 
10% in the example above.  

4) Vertical starting size. This specifies the vertical starting size of the picture, which is 10% 
in the example above.  

5) Scale. This specifies the scaling value for the animation. In the above example, the 
value is 2, which indicates that the picture should double in size.  

 
Thus, the picture is animated to double its size in 1 second. This animation is looped 
continuously such that it creates a pulsing effect, which can be useful for drawing attention to 
important stimuli.  

Creating Dynamic Stimuli 
As previously described, the stimuli to be presented on a given trial are specified by the  
/stimulusframes or /stimulustimes attributes. With these attributes, each stimulus is assigned to 
either a fixed frame or onset time to be displayed. This raises the question, how can the 
stimulus presentation time, or the actual stimuli to be presented, be varied across trials?  
 
One method is to simply create different trial elements for each condition. For example, imagine 
a procedure in which one of two stimuli, an arrow pointing left or right, is presented. To 
accomplish this, we can create two trial elements, one that presents the left arrow and the other 
that presents the right, as follows: 
 
<trial left> 
/ stimulusframes = [1=leftarrow] 
/ validresponse = (“e”, “i”) 
/ correctresponse = (“e”) 
</trial>  
 
<trial right> 
/ stimulusframes = [1=rightarrow] 
/ validresponse = (“e”, “i”) 
/ correctresponse = (“i”) 
</trial>  



Inquisit Programmer’s Manual 
 

Page 78 
 

 
Using two trial elements makes sense in this case because we only have two different 
conditions. Moreover, not only do the stimuli differ across these conditions, but the correct 
response is different as well.  

Insertstimulustime() and insertstimulusframe() functions 
 
Defining different trial elements may not always be feasible, however. For example, imagine a 
priming task in which the interstimulus interval (ISI) between prime and target is randomly varied 
between 300 and 500 milliseconds. In theory, we could define different trials for each of the 200 
possible ISI values, but that would be quite cumbersome. Instead, we can randomly select an 
ISI at the beginning of each trial and use the trials’s functions for inserting and removing stimuli 
at the corresponding times. Trial has two functions for inserting stimuli, “insertstimulusframe”, 
which inserts a stimulus into the specified refresh frame, and “insertstimulusframe”, which 
inserts the stimulus into the specified time. We’ll use the latter in the following example. 
 
<trial priming> 
/ ontrialbegin = [ 
 values.ISI = rand(300, 500); 
 trial.priming.insertstimulustime(text.target, values.ISI); 
] 
/ stimulustimes = [0=prime] 
/ validresponse = (“e”, “i”) 
/ ontrialend = [ 
 trial.priming.resetstimulusframes(); 
] 
</trial> 
 
This trial always presents the prime at the beginning of the stimulus presentation sequence. In 
the ontrialbegin event, we’ve inserted code that randomly selects an integer from 300 to 500 
and assigns it to a value called “ISI”. Next, a stimulus called “target” is inserted into the stimulus 
sequence at the randomly selected time. Once inserted, the stimulus remains in the sequence 
even after the trial is complete. Thus, we have to remove the stimulus at the end of the trial, or 
we would end up presenting it twice the next time the trial is run, three times the next time, and 
so on. We can remove the stimulus by calling the “resetstimulusframes()” function, which 
removes all dynamically added stimuli and restores the sequence to how it was defined in the 
/stimulustimes attribute - i.e., with only the prime presented at the beginning.  

Text insertion macros 
Another way to dynamically alter stimuli is through text insertion macros as covered above. 
These macros allow you to embed expressions in blocks of text, so that when the text is 
processed, the value of the expression is inserted into it. Consider the following example, in 
which a text element presents the participant’s name as entered on a previous openended trial: 



Inquisit Programmer’s Manual 
 

Page 79 
 

 
<text name> 
/ items = (“<% openended.name.response %>”) 
</text>  
 
When the text is presented, the participant’s response on the “name” openended trial is inserted 
into the string.  

Working with lists 
One of the most powerful, versatile, and useful elements in the IQML object model is the list 
element. As you might expect, the list element allows you to create lists of values, where values 
can be strings, numbers, properties, or even elements including other lists. The list element is 
more than just a list, however. It also includes powerful functions for selecting items from the 
list, whether in random order, sequentially, or according to custom algorithms. Lists also include 
functions that return descriptive statistics for numerical items, such as the mean, median, 
minimum, maximum, variance, standard deviation, and even the maximum number of runs 
(consecutive occurrences of the same value).  

List Attributes 
To use a list, it must be declared in IQML. The items of the list can also be declared in IQML, or 
they can be programmatically added and removed via IQScript. The following example shows a 
list that randomly selects without replacement from 3 different conditions over a course of 30 
draws. The nextvalue property returns a newly selected value every time it is called. Each 
attribute is explained below. 
 
<list example> 
/ items = (values.condition1, values.condition2, values.condition3) 
/ poolsize = 30 
/ replace = false 
/ selectionmode = random 
/ selectionrate = always 
</list> 

items 
The items attribute allows static declaration of items in the list. Items can be numbers, strings, 
property values, elements, or combinations of all three (though it would be rare to combine 
different types of items in a list). Proportions can be varied by repeating items in the list. 

replace 
The replace attribute determines whether selection is with or without replacement. If it’s set to 
boolean false or 0, selection is without replacement. If set to true or any non-zero value, 
selection is with replacement. The attribute is false by default. 



Inquisit Programmer’s Manual 
 

Page 80 
 

selectionmode 
The selection mode determines how items are selected from a list. The attribute supports two 
built-in modes, “random” and “sequence” which select items randomly and in sequential order 
respectively. The attribute can also be set to an arbitrary expression including formulas and 
property references. The default mode is random. 

selectionrate 
Selectionrate determines when the list’s “nextvalue” property selects a new item from the pool, 
or returns the currently selected item. By default, a new item is selected once per trial. It can 
also be set to “always”, in which case a new item is selected whenever the “nextvalue” property 
is accessed. 

Using Lists for Advanced Selection 
Consider the following list, which determines the order in which a set of stimulus items should 
be presented.  
 
<list reverseorder> 
/ items = (4, 3, 2, 1) 
/ selectionmode = sequence 
</list> 
 
The list includes the numbers 1 through 4 in reverse order. The selection mode is sequential, so 
the list effectively selects a countdown from 4 to 1. The list can control stimulus selection using 
the stimulus element’s “select” attribute, as in the following example. 
 
<text math_problems> 
/ items = (“7 - 5”, “12 x 4”, “23 + 9”, “43 - 28”) 
/ select = list.reverseorder 
</text> 
 
By setting /select equal to our list, the text element will select the item at the index returned from 
the reverseorder list. Thus, the fourth item is selected first, then the third item, then the second, 
and finally the first.  
 
Consider the following two lists, which are used to select which of two players the computerized 
players in Cyberball will throw the ball to next. Players 1 and 3 are computerized, and player 2 is 
the participant. 
 
<list player1schedule> 
/ items = (3, 3, 3, 2) 
</list> 
 
<list player3schedule> 



Inquisit Programmer’s Manual 
 

Page 81 
 

/ items = (1, 1, 1, 2) 
</list> 
 
Whenever computerized player1 or player3 receive the ball, a player number is drawn randomly 
from the corresponding list and the ball is thrown to that player. Given these definitions, player1 
will throw to player3 75% of the time, and player3 will throw to player1 75% of the time. The two 
computerized players thus favor each other over player2, the participant, which serves to create 
a sense of social exclusion.  
 
The list is used elsewhere in the script by the trials which implement the different combinations 
of throwers and catchers. Consider the following trial, which runs when player3 throws the ball 
to player1. After the trial is run, a branch command is executed to determine who player1 will 
throw the ball to, and which corresponding trial to run. 
 
<trial 3to1> 
... 
/ branch = [ 
 if (list.player1schedule.nextvalue == 2) { 
  return trial.1to2; 
 } else if (list.player1schedule.nextvalue == 3) { 
  return trial.1to3; 
 }; 
] 
</trial> 
 
To get the next random value from the list, the code uses the nextvalue property. By default, the 
nextvalue property doesn’t select a new value every time it is called. Instead, one new value is 
selected per trial, and subsequent calls to nextvalue on that same trial will return that same 
value. In the above example, the trial “1to2” is run if player2 is selected, and “1to3” is run if 
player3 is selected.  

Using Lists for Computation 
 
Lists can also be populated dynamically, such as when they are used for performance tracking. 
Consider the following example from a continuous performance test. The test tracks the 
accuracy and response times of all responses as well as for the different types of trials. The 
empty lists for tracking these data are declared in IQML as follows: 
 
<list accuracy_total> 
</list> 
 
<list latencies_total> 
</list> 



Inquisit Programmer’s Manual 
 

Page 82 
 

 
These lists can then be dynamically populated in IQScript. Consider the following trial, which 
presents a stimulus to which participants are supposed to respond by pressing a key on the left 
vs one on the right. At the end of the trial, the response is analyzed and added to the 
“latencies_total” list. Meanwhile, the “correct” property (1 if correct, 0 otherwise) is added to the 
“accuracy_total” list. 
 
<trial ax> 
... 
/ ontrialend = [ 

list.latencies_total.appenditem(trial.AX.latency, 1); 
list.accuracy_total.appenditem(trial.AX.correct, 1); 

</trial> 
 
The lists can then be used to compute and store performance metrics in the summarydata file. 
For example, the list has “mean”, “median”, and “standarddeviation” properties that return 
descriptive statistics for the list’s content. These can be added to the summary data’s columns 
as in the example below: 
 
<summarydata > 
/ columns = (computer.platform, script.startdate, script.starttime, script.subjectid, 
script.groupid, script.sessionid, script.elapsedtime, script.completed, 
list.latencies_total.mean, 
list.latencies_total.median, 
list.latencies_total.standarddeviation, 
list.accuracy_total.mean) 
</summarydata> 
 

  



Inquisit Programmer’s Manual 
 

Page 83 
 

Trial Duration, Timeouts, and Inter-Trial Intervals 
Inquisit provides a number of attributes for controlling the timing of various temporal characteristics 
of a trial. A trial can be thought of as a sequence of four intervals: 1) pretrialpause, 2) stimulus 
frames, 3) responsemode = timeout, and 4) posttrialpause. These are illustrated in the following 
diagram: 

 

pretrialpause 

This attribute pauses for the specified duration at the beginning of a trial, prior to stimulus 
presentation. In addition to providing a general means of controlling inter-trial intervals, the 
PretrialPause is useful for experiments that present large numbers of memory intensive stimuli 
on a given trial. Depending on the size of the stimuli and the speed of the hardware, stimulus 
preparation may add notable lengths of time to the beginning of the trial. Furthermore, stimulus 
preparation time may vary from trial to trial, in which case varying durations may be added to 
the beginning of the trials. This variance can be controlled by specifying a pretrialpause interval 
long enough to give Inquisit time to prepare the stimuli. Inquisit will then use this constant and 
predictable downtime to do all of its prep work for the trial. 

stimulusframes 

Specifies which stimuli should be presented on which frames for the trial. This also determines 
the total number of frames used by the trial. A frame corresponds to a single vertical retrace 
interval of the monitor. 

response 



Inquisit Programmer’s Manual 
 

Page 84 
 

By setting this attribute to a timeout procedure (e.g., /response = timeout(1000)), it specifies the 
maximum duration for Inquisit to wait for the subject to respond. If no response occurs within 
this duration, Inquisit finishes up the trial, waits for the posttrialpause to complete, and moves 
onto the next. 

timeout 

Specifies the maximum duration of a trial, from the very beginning of the trial to the end, not 
including the posttrialpause. 

posttrialpause 

Pauses for the specified duration at the end of each trial after the subject has responded. In 
addition to providing a general means of controlling inter-trial intervals, the PosttrialPause is 
useful for experiments that present large numbers of memory intensive stimuli on a given trial. 
Depending on the size of the stimuli and the speed of the hardware, the process of cleaning up 
a stimulus presentation sequence (i.e., removing stimuli from memory) may add notable lengths 
of time to the end of the trial. Furthermore, stimulus cleanup time may vary from trial to trial, in 
which case varying durations may be added to the ends of the trials. However, if a 
PosttrialPause interval is specified, Inquisit uses this time to clean up the stimulus presentation 
sequence. By specifying a PosttrialPause duration long enough for stimulus cleanup to 
complete, the experimenter can impose a constant and predictable duration at the end of each 
trial. 

trialduration 

Specifies the absolute duration of a trial, from beginning to end, including the posttrialpause. If 
the subject responds quickly, the posttrialpause interval is lengthened to fill out the remaining 
time in the duration. If the subject does not respond before the duration, the trial is terminated 
and the next trial begins. 

  



Inquisit Programmer’s Manual 
 

Page 85 
 

Running Multiple Scripts with the Batch Element 
Often a given experiment will involve running multiple scripts. For example, an experiment may 
administer a battery of different neuropsychological tests, or it may involve different phases, 
such as a memory experiment with study, interference, and test phases. Inquisit scripts can be 
combined and run as a sequence using the <batch> element, the main purpose of which is to 
provide an ordered list of scripts to run. The <batch> element is typically defined in its own 
standalone script called the “batch script.” When a batch script is run, Inquisit evaluates the 
<batch> elements in the script and runs the resulting list of scripts.  
 
Using batch scripts allows you to run a series of scripts without having to start each script 
separately. Inputs such as subjectid, groupid, and sessionid need only be provided once when 
starting the batch, and those values are passed to all the scripts.  
 
The syntax for the <batch> element is shown in the following example: 
 
<batch> 
/ file="bart.iqx" 
/ file="shortant.iqx" 
/ file="ospan.iqx" 
</batch> 
 
In this case, the <batch> element specifies a simple ordered list of scripts to run. Each script file 
is listed using the /file attribute.  The first script to run is the BART, then the Short ANT, and 
finally the OSPAN. For this batch to run correctly, all of the tests and associated materials (e.g. 
image files, sound files, etc.) must be saved to the same folder along with the batch script. If all 
files are not in the same folder, Inquisit won’t be able to find and load them, and the batch script 
will fail.  
 
The next example runs the same set of three tests as the previous. However, the 
/selectionmode attribute has been added: 
 
<batch> 
/ selectionmode = random 
/ file="bart.iqx" 
/ file="shortant.iqx" 
/ file="ospan.iqx" 
</batch> 
 
The /selectionmode attribute determines the order in which tests are run. By default, 
/selectionmode = sequence, which indicates tests should be run in the listed order. In the 
example, we’ve set /selectionmode = random, which indicates the tests are run in a random 
order whenever the batch is launched.  



Inquisit Programmer’s Manual 
 

Page 86 
 

Between-Group Manipulations 
A batch file can also be used to run different lists of scripts for different participants. Between-
subject manipulation of scripts can be used for counterbalancing order of tests or  administering 
control and treatment conditions. Participants can be assigned a list of scripts based on the 
groupid, sessionid, randomly, or according to custom logic.  
 
To run a different list of scripts for different participants, a <batch> element must be defined for 
each condition. Filters are then applied to the <batch> elements to determine which of them 
applies to the given session. For between-subject manipulations, filters are typically based on 
the groupid using the /groups attribute, as in the following example, which shows how to 
counterbalance the order of two scripts across groups:  
 
<batch> 
/ groups=(1 of 2) 
/ file="script1.iqx" 
/ file="script2.iqx" 
</batch> 
 
<batch> 
/ groups=(2 of 2) 
/ file="script2.iqx" 
/ file="script1.iqx" 
</batch> 
 
In the above example, participants assigned to group id 1 will run “script1.iqx” first and 
“script2.iqx” second. Participants assigned to group 2 will run the scripts in the opposite order.  

Between-Session Manipulations 
A batch file can also be used to run different lists of scripts across different test sessions in a 
repeated-measures design. Between-session manipulation of scripts can be used for 
experiments involving training and test phases, or repeated-measure designs in which different 
batteries of tests are administered at different phases. With Inquisit Lab, sessions are input by 
the researcher at the start of the session. With Inquisit Web, sessions are automatically tracked 
for each participant. 
 
To run different scripts for different sessions, a <batch> element must be defined for each type 
of session. Filters are then applied to the <batch> elements based on the sessionid using the 
/sessions attribute, as in the following example, which shows an experiment with learning and 
test sessions:  
 
<batch> 
/ sessions=(1 of 2) 
/ file="learning.iqx" 



Inquisit Programmer’s Manual 
 

Page 87 
 

</batch> 
 
<batch> 
/ sessions=(2 of 2) 
/ file="test.iqx" 
</batch> 
 
In the first of two sessions, “learning.iqx” is run. In the second, “test.iqx” is run. By assigning the 
correct session numbers, a given participant can be run through both phases over the two 
sessions.  
 
The following example shows a slightly more complicated design: 
 
<batch> 
/ sessions=(1, 2 of 4) 
/ file="digitspan.iqx" 
/ file="bart.iqx" 
</batch> 
 
<batch> 
/ sessions=(3, 4 of 4) 
/ file="digitspan.iqx" 
/ file="bart.iqx" 
/ file=”shortant.iqx” 
/ file=”corsiblocktest.iqx” 
</batch> 
 
The experiment runs a total of four sessions. In the first two sessions as indicated by the filter 
“/sessions=(1, 2 of 4)”, the Digit Span and BART are administered. In the third and fourth 
sessions as indicated by the filter “/ sessions=(3, 4 of 4)”, the Digit Span and BART are 
administered along with two additional tests, the Short ANT and the Corsi Block Test.  
 
As you can see, the syntax of the /sessions filter allows you to assign a given <batch> element 
to multiple sessions simply by listing the session numbers separated by commas. Similar syntax 
can be used to assign a given <batch> to multiple group numbers.  

  



Inquisit Programmer’s Manual 
 

Page 88 
 

Resources for Programming your Own Scripts 
Millisecond offers a number of resources to assist you in learning to program our platform, 
whether you are just starting out or already have several tests under your belt.  

Millisecond Test Library 
Millisecond has programmed hundreds of scripts covering a broad range of task paradigms. 
These scripts and source code are freely available for download. For the majority of 
programming projects, it can be easier to start with a similar task in our library and make 
modifications rather than starting from scratch. Each script is extensively commented to help 
you understand how various pieces of code work.  

Inquisit Language Reference 
This provides a complete reference for all elements and attributes in the Inquisit Language, 
along with examples that demonstrate usage. The reference is available through the Inquisit 
Lab Help menu. You can also select an element and attribute in the Inquisit Lab editor and 
press  
F1 for help on that specific command. The reference is also available online at millisecond.com. 
Help for specific commands can easily be located through search engines if you include the 
command and the word “Inquisit” in your query.  

Product Support 
If you are stuck on a particular issue, Millisecond offers various channels of support where you 
can post questions and share relevant code snippets. Millisecond maintains a public online 
forum where users can post questions and search for answers. You can also get programming 
assistance through the support@millisecond.com email address.  
 
Our support staff is highly knowledgeable and can quickly help you solve problems, whether 
they are high level questions about how to approach a given script, or issues with specific 
commands or procedures.  
 
 
 

 
 
 
 

mailto:support@millisecond.com

	Sean Draine, PhD.
	The Inquisit Lab Programming Environment
	Getting Started
	Editing or Running a Script
	Using Image, Video, Sound, HTML, and Other Media Files
	Accessing Data Files

	Debugging Inquisit Scripts
	Message List
	The Debugger Watch Window
	Running your code
	Aborting a Script
	Skipping a Block
	Running Specific Elements
	Test Monkey



	The Inquisit Programming Language
	Inquisit Markup Language (IQML)
	Elements and Attributes
	Getting Help

	Inquisit Scripting Language (IQScript)

	The IQML Object Model
	Defaults
	canvasaspectratio
	fontstyle
	screencolor
	inputdevice
	windowsize

	Stimuli
	text
	picture
	shape
	video
	html
	clock
	sound
	Positioning and Layout of Visual Stimuli
	Erasing Stimuli
	item

	Trials
	Presenting Stimuli
	Measuring Responses
	inputdevice
	validresponse
	correctresponse
	Measuring Response Time

	Specialized Trials
	Openended
	Slidertrial
	Likert

	Blocks
	preinstructions
	trials
	postinstructions

	Expt (experiment)
	preinstructions
	blocks
	postinstructions

	Presenting Instruction Pages
	instruct
	page
	htmlpage

	Data element
	columns
	separatefiles

	Summary Data
	columns
	separatefiles


	Programming a Simple Test with IQML
	Emotional Dot Probe
	Defining the Stimuli
	Defining the Trials
	Defining the Blocks
	Defining the expt
	Defining the instruction pages
	Default values
	Data


	Programming with IQScript
	IQScript Syntax
	Value Types
	Getting and Setting Object Properties
	Calling Object Functions
	Global Functions
	Operators
	Assignment Operator
	Arithmetic Operators
	Comparison Operators
	Logical Operators


	Values element
	Parameters element
	Keywords and Statements
	Variable declarations: var
	Conditional Statements: if, else if, and else.
	Conditional Looping
	Return Statement

	Expressions element
	Built-in Elements
	Script Element
	script.completed
	script.elapsedtime
	script.groupid
	script.subjectid
	script.sessionid
	script.starttime
	script.startdate
	script.abort()

	Display Element
	display.height
	display.width
	display.refreshinterval

	Computer Element
	computer.haskeyboard
	computer.languagecode
	computer.os
	computer.platform

	Inquisit Element
	inquisit.releasedate
	inquisit.version

	Mouse Element
	mouse.x
	mouse.y



	Handling IQML Events with IQScript
	Stimulus Onprepare Event
	Trial Ontrialbegin and Ontrialend Events
	Block Onblockbegin and Onblockend Events
	Expt Onexptbegin and Onexptend Events
	Trial Isvalidresponse and Iscorrectresponse Events

	Conditional Branching with IQScript
	Text Insertion Macros
	Advanced Stimulus Presentation
	Selecting Items
	Random Selection
	Sequential Selection
	Synchronized Selection Between Stimuli

	Animation
	Path Animations
	Points animations
	Circle animations
	Size Animations

	Creating Dynamic Stimuli
	Insertstimulustime() and insertstimulusframe() functions
	Text insertion macros

	Working with lists
	List Attributes
	items
	replace
	selectionmode
	selectionrate

	Using Lists for Advanced Selection
	Using Lists for Computation


	Trial Duration, Timeouts, and Inter-Trial Intervals
	pretrialpause
	stimulusframes
	response
	timeout
	posttrialpause
	trialduration

	Running Multiple Scripts with the Batch Element
	Between-Group Manipulations
	Between-Session Manipulations

	Resources for Programming your Own Scripts
	Millisecond Test Library
	Inquisit Language Reference
	Product Support


